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PREFACE 

This report presents one of the first projects in which AI has been specified for 
geoengineering application on the bedrock and groundwater surface modelling. The given 
automated procedure and uncertainty quantification approach using AI techniques offer 
tremendous potential for geo-related industries and big data analyses. This can lead the 
AI users to more efficient and reliable production and hence more flexible models. 
Obviously, the AI is impacting the future of virtually every industry and every human 
being. It may even become the language of daily life in the future as the main driver of 
emerging technologies like big data, robotics, automation etc. The project results show 
good results and promise a very interesting future. 

Additional to the authors the following co-workers from Tyréns made valuable 
contributions to the project: Emma Zäll, Jennifer Wänseth, Olof Friberg, Lars Marklund, 
Beatriz Machado, Maria Duvaldt, and Ida Samuelsson. 

Reference group members who provided valuable comments and suggestions was 
composed of Per Tengborg (BeFo), Robert Sturk (Skanska), Torleif Dahlin (LTH), Olle 
Båtelsson (Trafikverket), Mats Svensson and Rikard Gothäll (Tyréns), Alireza Malehmir, 
(Uppsala University), Diego Mas Ivars (SKB), Paul Evins (WSP), and Fardad Maghsoudi 
Moud (Twente University, Netherlands). The report was reviewed by the reference group 
members and additionally by external scientist, Dr. Mohammad Khorsand Zak from the 
Islamic Azad University, Iran. An expert in the field of computational mathematics and 
soft computing approaches. 

The project was co-funded with BIG (Branschsamverkan I Grunden), Tyréns, and KTH. 

Stockholm 2022 

Patrik Vidstrand 
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FÖRORD 

Denna rapport presenterar ett av de första projekten där AI har specificerats inom 
geoteknik, i detta fall för modellering av berggrunds- och grundvattenytor. Det 
automatiserade förfarandet och metoden för kvantifiering av osäkerhet som AI-tekniken 
erbjuder har en enorm potential för georelaterade industrier och big data-analyser. Detta 
kan ge AI användarna mer effektiva och tillförlitligare produktion och mer flexibla 
modeller. Uppenbarligen påverkar AI framtiden för praktiskt taget alla branscher och 
varje människa. Det kan till och med bli vardagsspråket i framtiden och fungera som 
drivkraft för framväxande teknologier så som big data, robotik, automation etc. 
Projektresultaten visar goda resultat och lovar en mycket intressant framtid. 

Utöver författarna har följande medarbetare från Tyréns gjort värdefulla bidrag till 
projektet: Emma Zäll, Jennifer Wänseth, Olof Friberg, Lars Marklund, Beatriz Machado, 
Maria Duvaldt och Ida Samuelsson. 

Referensgruppsmedlemmar som lämnat värdefulla kommentarer och förslag bestod av 
Per Tengborg (BeFo), Robert Sturk (Skanska), Torleif Dahlin (LTH), Olle Båtelsson 
(Trafikverket), Mats Svensson och Rikard Gothäll (Tyréns), Alireza Malehmir, (Uppsala 
University), Diego Mas Ivars (SKB), Paul Evins (WSP) och Fardad Maghsoudi Moud 
(Twente University, Nederländerna). Rapporten granskades av referensgruppens 
medlemmar och dessutom av en extern forskare, Dr Khorsand Zak från Islamic Azad 
University, Iran; en expert inom området beräkningsmatematik. 

Projektet samfinansierades med BIG (Branschsamverkan I Grunden), Tyréns och KTH. 

Stockholm 2022 

Patrik Vidstrand 
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SUMMARY 

Due to complex spatial patterns and sparse data, delineating and mapping bedrock levels, 
groundwater tables and overlaid deposits are essential but difficult tasks in geo-
engineering applications. The outcomes of predictive geo-engineering models also 
contain uncertainties. Therefore, formal frameworks are needed for uncertainty 
quantification (UQ) to assess the reliability of the models and reduce hesitancy in both 
computations and real-world applications. Modern computing techniques, such as 
artificial intelligence-based models (AI), provide alternatives to overcome the 
deficiencies of currently used methods. The objective of the present study is to investigate 
the feasibility of AI in the prediction of 3D spatial distribution of subsurface bedrock 
levels and groundwater tables in large areas in Stockholm, Sweden. This study also aims 
to address the uncertainty quantification challenge in geo-engineering projects by using 
spatial AI models with a sufficient degree of accuracy. Two datasets from road 
construction projects (Tvärförbindelsen and E20 Bälinge-Vårgårda) were used for the 
prediction of bedrock and groundwater surfaces and uncertainty quantifications. From the 
comparison of the predicted surfaces obtained using the AI and the Ordinary Kriging (OK) 
geostatistical method, it was found that the AI method more accurately predicted spatial 
3D surface and provided more appropriate predictions at any point in the subsurface than 
the OK method. Three AI uncertainty analysis methods, Monte Carlo Dropout (MCD), 
Quantile Regression (QR) and Automated Random Deactivating Connective Weights 
(ARDCW), were tested in this study and then compared with the OK method. These AI 
uncertainty methods (e.g. MCD and QR) are not extensively used in bedrock and 
groundwater surface modeling, and ARDCW is a novel, state-of-the-art ensemble method 
proposed in this study. The results showed that a UQ analysis based on AI methods can 
quantify uncertainties more accurately and contains more true values inside of the 
intervals than the OK method. It was also shown that the MCD method consumes more 
computational time, and the estimated uncertainties are not as accurate as QR and 
ARDCW. The QR and ARDCW methods have both demonstrated superiorities in the 
estimation of uncertainties from the two tested datasets. Therefore, the results have 
provided more possibilities for the use of QR and ARDCW for future uncertainty analysis 
in bedrock and groundwater modelling. The results also showed that the AI method is a 
flexible and efficient alternative approach that can account for the associated uncertainties 
for mapping the spatial distribution of the depth to bedrock (DTB) and groundwater table 
(GWT) surface. 

Keywords: Spatial bedrock distribution, groundwater modelling, artificial intelligence 
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SAMMANFATTNING 

På grund av komplexa rumsliga mönster och glesa data är en viktig och svår uppgift i 
geotekniska tillämpningar att avgränsa och kartlägga berggrundsnivåer, 
grundvattennivåer och överlagrade jordavlagringar. Resultatet av prediktiva geo-
ingenjörsmodeller innehåller också osäkerheter. Därför behövs ramverk för kvantifiering 
av osäkerheter (UQ) för att kunna bedöma modellernas tillförlitlighet och minska 
osäkerheten i både beräkningar och verkliga tillämpningar. Moderna beräkningstekniker 
såsom artificiell intelligensbaserade modeller (AI) är lämpliga alternativ för att övervinna 
bristerna med för närvarande använda metoder. Syftet med denna studie är att undersöka 
genomförbarheten med AI för att förutsäga 3D rumsliga fördelningar av 
berggrundsnivåer och grundvattennivåer för stora områden i Stockholm. Denna studie var 
också motiverad att ta itu med utmaningen med att kvantifiera osäkerheter i geo-
ingenjörsprojekt genom att använda adekvata och noggranna rumsliga AI-modeller. Två 
uppsättningar av data från projekten Tvärförbindelsen och E20 Bälinge-Vårgårda 
användes för förutsägelse av berggrundsnivåer och grundvattennivåer och kvantifiering 
av tillhörande osäkerheter. Från jämförelsen mellan de förutsagda ytorna från AI och den 
geostatistiska metoden Ordinary Kriging (OK), fann man att AI-metoden kan förutsäga 
mer korrekta rumsliga 3D-ytor och ge mer lämpliga förutsägelser vid vilken punkt som 
helst i modellerna. Tre metoder användes för beräkning av osäkerheterna tillhörande  AI-
analyserna och jämfördes med OK-metoden: Monte Carlo Dropout (MCD), Quantile 
Regression (QR) och Automated Random Deactivating Connective Weights (ARDCW). 
Dessa metoder såsom MCD och QR har inte i någon utsträckning använts och ARDCW 
är en ny föreslagen toppmodern metod som utvecklats i denna studie. Studien visar att 
UQ-analys baserad på AI-metoderna kan kvantifiera osäkerheterna mer precist och 
innehålla mer korrekta värden i de studerade intervallen än OK. Det påvisas också att 
MCD-metoden förbrukar mer beräkningstid och de uppskattade osäkerheterna är inte lika
korrekta som QR och ARDCW. Därför har resultaten gett fler möjligheter för QR och
ARDCW som kan används för framtida osäkerhetsanalyser. Resultaten visar att AI-
metoder är flexibla och är effektiva alternativa tillvägagångssätt som kan ta hänsyn till de
associerade osäkerheterna för att kartlägga den rumsliga fördelningen av djupet till
berggrunden (DTB) och grundvattenytan (GWT).

Nyckelord: Bergtopografi, grundvattennivåer, modellering, artificiell intelligens 
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1. INTRODUCTION

1.1 Background for bedrock surface modelling 

Understanding the subsurface of our earth is important for many different applications 
within the geosciences. The creation of three-dimensional models can assist with the 
understanding of a conceptual and quantitative model of the subsurface. The depth to 
bedrock (DTB) provides valuable information for both the design and construction phase 
of many projects. Unexpected conditions of DTB can cause delays and influence 
estimated costs, resulting in increased risk. The information on DTB is usually obtained 
from sparse measurements, such as borehole drilling or continuous 2D profiles (e.g. 
geophysical measurement). In Sweden, soil-rock soundings (JB sounding) are usually 
carried out to obtain the DTB. Despite the accuracy of soil-rock sounding in determining 
the DTB, this method suffers from high costs related to drilling and is a time-consuming 
process, which can only give the DTB at sparse points.  Geophysical methods are less 
costly and can usually cover a larger part of the study area, but the DTB figures obtained 
from geophysical profiles are not exact and contains uncertainties (e.g. Fournier et al., 
2013). These figures need to be correlated with information from direct geotechnical 
methods, as data are generally interpreted qualitatively, and useful results can only be 
obtained by experts familiar with the particular testing method (Shahri et al., 2021a). The 
ability to use limited bedrock information to create an accurate prediction of the rock 
surface with the same number of boreholes is valuable and attractive (Machado, 2019; 
Shan et al., 2020 CAJG). To estimate the DTB at unsampled locations, interpolation and 
extrapolation is often needed. This is usually performed by using mathematical methods. 
Kriging interpolation is one of the most commonly used interpolation methods in the 
fields of geology and hydrology (Samui & Sitharam, 2011; Viswanathan et al., 2014; 
Kitterød, 2017; Li et al., 2020) and is generally considered to produce good fitting 
surfaces for a variety of datasets (Kitanidis, 1997). Other examples of commonly used 
interpolation methods are inverse distance weighting and minimum curvature (Li & Heap, 
2014). As each interpolation method has its own characteristics and level of complexity, 
results produced using different techniques can differ for the same data. In the literature, 
interpolations are commonly evaluated according to how accurately the modelled dataset 
fits to the measured dataset (Li & Heap, 2014). However, the sources of uncertainties 
related to model parameters, underlying conceptual assumptions, structure of model, 
geological conditions and observed spatial data (i.e. lack of data on natural variability) 
cannot be quantified by these methods (Shahri et al., 2020). 

1.2 Background for groundwater surface modelling 

Groundwater is defined as the water that completely fills the pore spaces in soil and the 
fractures in rock (Todd & Mays 2005; Hu & Jiao, 2010; Tang et al., 2017; Salvo et al., 
2020). Approximately 30% of all freshwater on earth occurs as groundwater (Nordström, 
2005). Groundwater is an important source of drinking water in many parts of the world. 
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Furthermore, the occurrence of groundwater affects the geotechnical stability of soils, as 
a lowering groundwater table may cause subsidence (SGU, n.d.). Over the past several 
decades, the use of groundwater modelling has increased as a means to better evaluate 
the complexities inherent in hydrogeological calculations. Information required for 
groundwater modelling includes the elevation of soil and bedrock layers and the 
groundwater table (Agerberg, 2020). This data is usually collected in a limited number of 
sample points, both due to practical and economic reasons. In order to approximate values 
in unknown points, known values in measured sample points can be interpolated over the 
study area (Kitanidis, 1997). This is usually performed using mathematical methods, such 
as Kriging, inverse distance weighting and minimum curvature as mentioned above. In 
this report, only the surface of the groundwater table (GWT) is considered for modelling. 

1.3 AI modelling 

In recent years, AI techniques have shown remarkable computational and learning 
capabilities in addressing geotechnical problems. As DTB and GWT modelling deal with 
various uncertainties (Shahri et al., 2020; Hood et al., 2019), the subcategories of AI 
techniques are appropriate alternatives to overcome the limitations and simplifications 
(e.g. Hegle et al., 2017; Chang & Chao, 2009; Shahri et al., 2021a). Furthermore, 
hybridizing the AI techniques with metaheuristic algorithms can significantly optimise 
the model performance. AI is currently being used for systematic uncertainty analysis that 
can be effectively applied to generate DBT and GWT models. It can account for 
uncertainties related to model parameters, underlying conceptual assumptions, structure 
of model, geological conditions and observed spatial data. For more reading about AI, 
Marsland (2018) is recommended.  

1.4 Benefits of more accurate modelling 

DTB measured as the thickness of the sediments above the bedrock plays an important 
role in many different contexts. One example is the mining industry, where the 
information on DTB can help in cost estimation for underground mining. Another 
example is infrastructure projects, where information on DTB can help in subsurface geo-
engineering modelling and risk assessment (Kitterod & Leblois, 2019; Shahri et al., 2020; 
Shan et al., 2021 MLRA). These imply that producing highly accurate predictive DTB 
models is a critical task that can have significant effects on the costs and risks of geo-
engineering projects. Accurate modelling of the DTB at unsampled locations can also 
save on costs for extra and unnecessary borehole drillings, which are usually very 
expensive to carry out. In recent years, the uncertainty of the estimated DTB has been 
noted by many engineers (e.g. Trafikverket) due to the risk of failures in infrastructure 
projects (Shahri et al., 2021a). Inaccuracies in the predicted DTB can have a significant 
financial impact when there is a failure to plan for the worst case scenario (Carlsson, 
2005; Koc et al., 2020). The advantage of AI modelling is that it is a flexible and efficient 
alternative that can account for associated uncertainties, thus creating more accurate 
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spatial 3D models and providing an appropriate prediction at any point in the subsurface 
(Shahri et al., 2020; Shan et al., 2021 MLRA).  

With increasing pressure on groundwater resources due to human activity and climate 
change, accurate and reliable predictions of flow and groundwater table are essential for 
sustainable groundwater management practices. Accordingly, GWT modelling is often 
required to simulate the impacts of management scenarios on groundwater resources. It 
can help to evaluate the costs, benefits and risks of a proposed water resource 
development plan and it has been shown to be useful in a variety of groundwater related 
engineering problems and as a support in decision making. Accurate GWT modelling can 
help in slope stability analysis, planning of additional safety elements when groundwater 
table changes, and in the prediction of groundwater depletion.  

1.5 Aims 

• Automated AI-based model for the analysis of geotechnical sounding;
geophysical and GWT data to study the spatial distribution of bedrock and
groundwater surfaces

• Estimated uncertainties in the predictive GWT and DTB models
• Comparison of the AI modelling method with traditional geostatistical

interpolation techniques, such as Ordinary Kriging (OK)
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2. DATA SOURCE AND STUDY AREA

2.1 Tvärförbindelsen 

Data used for the GWT modelling was from the Tvärförbindelsen project. The study area 
consists of a 20 km stretch of an ongoing highway project in Stockholm, Sweden and 
contains more than 300 investigated groundwater wells. For the monitored GWT data, 
244 points were available and selected from continuous recorded intervals from 19 to 25 
September 2020 in  a 5 km x 5 km area as shown in the digital elevation map (Figure 1A), 
where we modelled the GWT from the input data as presented in Figure 1B (black dots). 
Figure 1C shows the distribution of measured geotechnical borehole data that is used for 
DTB modelling.  

2.2 E20 Bälinge-Vårgårda 

Trafikverket has expanded E20 between Bälinge-Vårgårda to build a new highway with 
crossings due to an increased traffic load and safety concerns. In this project, Tyréns has 
drilled more than 200 soil-rock sounding boreholes, mapped the bedrock outcrops and 
carried out geophysical measurements to study the bedrock levels in the area. See Figure 
2 for the distribution of borehole locations and geophysical profiles. All these data were 
used as the input data for deep learning modelling. In part of the studied area, the 
overlaying soil was excavated, and the bedrock surface was fully uncovered. This 
uncovered bedrock surface was later scanned using airborne lasering scanning to get the 
point cloud for the true bedrock surface. We were therefore able to compare our results 
from deep learning modelling with the true scanned bedrock surface. There are around 
46,000 points to represent the uncovered bedrock surface.  
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Figure 1. The overlaid digital elevation map and satellite image of the study area (A); 
the mapped aquifers from SGU (green) and monitored GWT data in the area (B); and 
the colour map of spatial distribution of drilled geotechnical boreholes showing the 

information DTB information (C). 
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Figure 2. The spatial distribution of drilled geotechnical boreholes and geophysical 
profiles. Different colours indicate the DTB information at each borehole. 

3. METHODOLOGY AND APPLIED TECHNIQUES

3.1 Deep learning 

Deep learning is part of the broader family of machine learning methods based on 
artificial neural networks. It attempts to mimic the human brain and enables systems to 
cluster data and make predictions with high accuracy. In this study, predictions made 
through deep learning are used to predict bedrock levels and groundwater tables at 
unsampled points. Figure 3 shows the structure of deep learning networks used in this 
study. The input layers contain three variables: X (northing), Y (Easting), Z (Ground 
surface level). The optimum AI model was achieved using an automated process in which 
numerous topologies corresponding to a wide variety of different internal 
hyperparameters and numbers of neurons were monitored. The results showed that using 
40 neurons in an arrangement with 28 in first layers and 12 in second hidden layers 
provides the best performance and can be used to predict the DTB at unsampled locations 
(Figure 4). This model is technically presented as 3-28-12-1, showing the three used 
inputs, two hidden layers with 28 and 12 neurons and one output as the predicted DTB. A 
more through description of deep learning can be found in the book Introduction to Deep 
Learning (Charniak, 2019). 

3.2 Uncertainty analysis 

Since the predicted value (interpolated levels) lacks certainty, there is always uncertainty 
imbedded in the predictions. These uncertainties can be caused by a lack of DTB 
information and knowledge, errors in the measured data, and the mathematical modelling 
process. Estimating the uncertainties of the predicted DTB is very important for 
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infrastructure building projects, due to the impact of uncertain levels. A good estimation 
of the DTB can decrease the level of uncertainties. This can help in project risk 
management, construction material planning and project control, thus reducing conflicts 
among various parties. Therefore, in the current study, we examined three uncertainty 
analysis methods in deep learning to quantify the uncertainties in the predicted values. 
Figure 5 illustrates the prediction interval, while Figure 6 shows the taxonomy of the 
employed uncertainty quantification (UQ) methods.  
 

 
Figure 3. Deep learning neural networks with two hidden layers. Source: 

https://towardsdatascience.com/coding-neural-network-forward-propagation-and-
backpropagtion-ccf8cf369f76 

 

 
Figure 4. Variation of network RMSE for developed optimum models as a function of 

network structures. 

 
 

https://towardsdatascience.com/coding-neural-network-forward-propagation-and-backpropagtion-ccf8cf369f76
https://towardsdatascience.com/coding-neural-network-forward-propagation-and-backpropagtion-ccf8cf369f76
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Figure 5. Definition of prediction interval and upper and lower prediction limits (Durga 
& Dimitri, 2006). 

Figure 6. A summary of the UQ methods from a literature review (Shahri et al., 2021b). 
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3.2.1 Monte Carlo Dropout (MCD) 

The application of MCD in deep learning-based analyses was originally introduced by 
Gal and Ghahramani (2016). In this process, the neurons randomly become disabled, and 
thus in each training step, a different subset of the network architecture is evaluated and 
adjusted. This kind of randomness is also introduced to the prediction process. The MCD 
was performed in multiple trained networks to get a distribution of the output value, and 
this distribution was used to estimate the uncertainties. Figure 7 illustrates the MCD. The 
number of disabled neurons is the user-defined value and is 20% in this study. For more 
in-depth information about MCD, Seoh (2019) is recommended. 

Figure 7. Illustration of Monte-Carlo Dropout, which randomly disables networks 
during training and prediction time. Source: https://www.inovex.de/de/blog/uncertainty-

quantification-deep-learning/ 

3.2.2 Quantile Regression (QR) 

The QR allows us to understand relationships between variables outside the mean of the 
data, making it useful in calculating out the outcomes that are non-normally distributed 
and that have nonlinear relationships with predicted variables. Figure 8 shows an example 
of different estimated quantiles for a simulated dataset. The 90% prediction interval is 
between Q (0.05) and Q (0.95). For more information on QR, see Koenker and Hallock 
(2001). 

3.2.3 Proposed novel automated random deactivating weight (ARDCW ) 
approach 

The ARDCW is a novel state-of-the-art ensemble method that was proposed during this 
study. Instead of dropping neurons, which is the approach used in the MCD, the 
connective weights between layers are randomly deactivated. Therefore, the ARDCW is 
solely focused on randomly switched off weights, not neurons, where the remaining 
weights are forced to participate in learning processes and assist in decreasing the 
overfitting. As presented in Figure 9, the deactivation is performed several times without 
changing the structure of the network; therefore, each run of the model through the 
deactivated weights is performed solely with the previously identified optimum model. 
This implies that unlike the MCD, the optimum model will not be changed. To overcome 
the overfitting problem and avoid being trapped in local minima, the ARDCW uses several 

https://www.inovex.de/de/blog/uncertainty-quantification-deep-learning/
https://www.inovex.de/de/blog/uncertainty-quantification-deep-learning/
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embedded internal and nested loops to monitor all the topologies based on different 
hyperparameters. Accordingly, this approach uses an optimum trained topology capable 
of performing a given task even when the weights are randomly sampled. This implies 
that the training of multiple different topologies is avoided, as the uncertainty will be 
estimated by changing the internal assigned weights of a fixed optimum model. The 
number of deactivated weights is a user-defined value, and the upper band of 50% of the 
total amount of weights was used in this study. More details on developed theories and 
information on this approach can be found in our summary of Paper 2 (section 4.2) and 
in the reference list (Shahri et al., 2021b). 
 

 
Figure 8. This example shows the different estimated quantiles. The 90% prediction 

interval is between Q (0.05) and Q (0.95). Source: 
https://hackmd.io/@cgarciae/quantile-regression. 

 

 
 

Figure 9. Illustration of ARDCW with two hidden layers. Modified from source: 
https://towardsdatascience.com/coding-neural-network-forward-propagation-and-

backpropagtion-ccf8cf369f76 

  

https://towardsdatascience.com/coding-neural-network-forward-propagation-and-backpropagtion-ccf8cf369f76
https://towardsdatascience.com/coding-neural-network-forward-propagation-and-backpropagtion-ccf8cf369f76
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4. SUMMARY OF PUBLISHED PAPERS

4.1 Development of an automated predictive AI model for spatial DTB 
distribution 

Modelling the spatial distribution of DTB is an important and challenging concern in 
many geo-engineering applications. This section presents a summary of Shahri et al. 
(2021a), which presents a developed automated predictive AI model through a deep 
learning procedure. In their study, AI was applied in a road building project in Stockholm, 
Sweden to build a 3D spatial DTB model. The process was developed and programmed 
in both C++ and Python to track their performance in specified tasks and to cover a wide 
variety of different internal characteristics and libraries. Two different programming 
languages (Python and C++) have been considered in order to provide access to different 
internal hyperparameters, such as activation functions and training algorithms for testing 
and capturing the most suitable deep learning topologies. The results from AI were 
compared with ordinary kriging (OK), and the superiority of the developed automated AI 
system was demonstrated through confusion matrices and the ranked accuracies of 
different statistical errors. The results showed that the intelligence models can create more 
accurate spatial 3D models and provide an appropriate prediction at any point in the 
subsurface of the study area (Shahri et al., 2021a).        

The characterisation of DTB profiles is commonly interpreted by using sparse number of 
geotechnical soundings in and around a desired area. The dataset used in this study is 
from Tvärförbindelsen (section 2.1). In total, 1,968 data points from soil-rock soundings 
were used for DTB modelling. This area consists mainly of fine to coarse-grained gneiss 
of sedimentary origin and medium to coarse-grained metavolcanic rocks, as well as 
occasional coarse-grained pegmatite passages. Sedimentary gneisses generally dominate 
in the area. 

To find the optimum model that can best describe the characteristics of the input data, an 
automated iterative procedure was developed through both C++ and Python to monitor 
as many different combinations of deep learning hyperparameters as possible (Shahri et 
al., 2021a). This implies that the optimum models are screened among numerous 
examined structures, even those with similar topologies but different internal 
characteristics. Accordingly, the variation of network RMSE using 40 neurons in different 
topologies, starting from 3-1-39-1 to 3-39-1-1, is reflected in Figure 10. A summary of 
the results shows that the 3-28-12-1 and 3-25-15-1 can be selected as optimal topologies. 
Models can be subsequently trained based on these topologies and used for predictions of 
DTB at unsampled locations. 

Geostatistical and AI techniques can generally be used as forecasting strategies of 
subsurface or geological characteristics. However, because of the high heterogeneity of 
spatial distributions in the prediction process, the success of the geostatistical 
interpolation algorithm was significantly lower than AI models, as shown in Figure 11 
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(A, B and C). Subsequently, Figure 11 (D, E, F) shows the differences between the 
measured DTB and what was predicted by the OK and AI models. 

 

Figure 10. Variation of network RMSE for developed optimum models using C++ and 
Python as a function of network topologies. 

Statistical error metrics are commonly used to evaluate the performance of models. As 
shown in Table 1, C++ contributed the best total rank among the three methods. The 
reason for observed differences in the performance of the programming languages relates 
to the optimisation methods and initialised condition in the training procedure. 

In this study, concerns associated with the generation of a 3D visualised subsurface 
predictive DTB model were addressed using an automated intelligence training system in 
C++ and Python computer programming environments. To enable more efficient 
learning, network models composed of different internal characteristics were examined 
to capture the optimum models. It was concluded that OK cannot be presumed to be a 
representative model for the entirety of the studied area, while the developed intelligence 
models provide significant, cost-effective and sufficiently accurate tools for subsurface 
DTB geo-spatial prediction purposes.  

Table 1. Results of statistical error criteria in evaluated model performance 

 

Model 

Performance criteria  Ranking of criteria 

MAPE RMSE IA MAD R2 CR 
domain 

MAPE RMSE IA MAD R2 CR 

 

Total  

rank 

Sort 
order 

C++ 0.28   6.30 0.98 1.03 0.94 [-29,28] 3 3 3 3 3 3 18 1 

Python 0.41 7.84 0.97 1.21 0.90 [-47,49] 2 2 2 2 2 1 11 2 

OK 0.50   9.87 0.95 1.68 0.84 [-54,19] 1 1 1 1 1 2 7 3 
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Figure 11. Comparing the predictability of predicted values using (A) C++, (B) Python, 
(C) OK and the calculated residuals between measured and predicted DTB achieved 

from (D) C++, (E) Python and (F) OK. 
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4.2 Development of a novel ensemble automated AI approach for uncertainty 
analysis 

This section presents a summary of Shahri et al. (2021b) in the development and proposal 
of a novel ensemble-based AI approach using automated process for uncertainty 
quantification (UQ). The UQ is an important benchmark to assess the AI-based model 
performance (Elam & Rearden, 2017; Shan et al., 2021, MLRA). However, currently used 
methods are not only limited in terms of computational resources, they also require 
changes to topology and optimisation processes, as well as multiple performances to 
monitor instabilities in the model (Borgonovo, 2006; Farrance & Frenkel, 2012). This 
implies that due to noise generated in the process, the results are affected in each random 
dropping, and thus from a mathematical standpoint, the performance and predictability of 
the AI structure should always be evaluated with the original optimum model. As a result, 
a novel state-of-the-art ensemble automated random deactivating connective weights 
approach (ARDCW) was proposed (Figure 12) and programmed in C++ (Shahri et al., 
2021b). This automated approach is solely focused on randomly switched off weights in 
optimum topology, not neurons, where the remaining weights are forced to participate in 
learning processes and assist in decreasing overfitting and avoid being trapped in local 
minima. Therefore, ARDCW does not require any changes in the optimisation process and 
can directly be applied to already trained models in a way that outperforms other models. 
Accordingly, training of multiple different topologies is avoided, and the UQ will be 
estimated by deactivating the internal connective weights of a fixed optimum model. The 
retraining procedure of an optimum topology in ARDCW provides greater accuracy, 
because the predictions vary across multiple runs in which the produced predictions can 
be interpreted in terms of average errors. In the present study, the number of sampled 
weights was set within the interval of 1% to 50% of total weights. However, the selection 
of this rate for dropout is flexible and user defined, where the greater the number of 
deactivations, the more ensembles are examined, and thus the more analysis time is 
required. The proposed ARDCW is then experimentally applied on geo-locations of 244 
sets of compiled ground water tables (see section 2.1) between 19-25 September 2020 in 
an urbanised area of Stockholm (Figure 13b).  
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Figure 12. Block diagram of the proposed ARDCW approach for UQ modelling 

Table 2 reflects the comparison of the ARDCW with MCD and the QR. According to 
ranked statistical metrics, i.e. the RMSE, R2, coefficient of efficiency (Ec), the index of 
agreement (IA), the percentage of observed GWT bracketed by 95% confidence interval 
(𝑃𝑃𝐶𝐶𝐶𝐶95%), and the average relative interval length of the confidence interval (ARIL), the 
ARDCW is shown to be superior to other methods. The closeness statistics of the ARDCW 
and QR can be interpreted as similar properties of posterior distribution of predicted GWT 
for these methods. The results reveal that the smaller differences between the observed 
GWT and those predicted by ARDCW show a higher degree of safety in the prediction 
process and vice versa. 
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Table 2. Comparison and ranking the UQ models through statistical metrics 

 

Model 

Performance criteria Ranking of criteria 

E
c  

R
M

SE 

IA 

R
2 

𝑷𝑷
𝑪𝑪𝑪𝑪 𝟗𝟗𝟗𝟗% 

𝑨𝑨𝑨𝑨
𝑨𝑨𝑨𝑨

𝑪𝑪𝑪𝑪 %
𝟗𝟗𝟗𝟗 

𝑷𝑷
𝑷𝑷
𝑷𝑷

𝟗𝟗𝟗𝟗% 

E
c  

R
M

SE 

IA 

R
2 

𝑷𝑷
𝑪𝑪𝑪𝑪 𝟗𝟗𝟗𝟗% 

𝑨𝑨𝑨𝑨
𝑨𝑨𝑨𝑨

𝑪𝑪𝑪𝑪 %
𝟗𝟗𝟗𝟗 

𝑷𝑷
𝑷𝑷
𝑷𝑷

𝟗𝟗𝟗𝟗% 

T
otal rank 

Sort order 

ARDCW 0.97 2.51 0.99 0.97 10.66 3.52 0.95 3 3 3 3 1 2 3 18 1 

QR 0.96 2.99 0.99 0.96 10.44 2.73 0.95 2 2 3 2 2 3 3 17 2 

MCD 0.94 3.5 0.98 0.94 9.5 5.76 0.68 1 1 1 1 3 1 1 9 3 

 

In addition, the calculated success rate from a 10-class confusion matrix showed that at 
89% correct, the ARDCW provided a 22% and 14% improvement in the estimated UQ 
than the MCD and QR, respectively. Statistically, a predictive model is stable and under 
control if most of the predictions fall within the range of the confidence interval (CI). 
This range refers to the long-term success rate of the method in capturing the predicted 
output, where the wider the CI, the greater the instability (Figure 13, upper). Comparing 
the predicted PI and CI can show how accurately a mathematical model describes the true 
system in a real-life situation. This then can be converted to a map (Figure 13, lower) to 
show much the predicted GWT value will fluctuate due to noise or variations in the data 
and help to interpret the distribution of uncertainty from the lack of observed data or 
sudden, big changes in the groundwater tables. This map can also help in the planning of 
future data collection and determining where to drill more groundwater boreholes to 
reduce high uncertainties in estimating the GWT.    
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Figure 13. Comparative plots of the applied method in UQ analysis at a level of 95% 
for CI and PI (upper) and estimated UQ, using applied GWT data (black dots) in the 

study area (lower). 
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Figure 14. The results of the ARDCW through the predictive optimum topology in 
visualising the estimated uncertainty: (a) surface of the area, (b) observed GWT, (c) 

predicted GWT, (d) upper and lower limit of estimated UQ and (e) overlaid 
supplementary perspective for the entire study area. 
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Despite the difficulty in creating a 3D visual predictive spatial GWT (Tacher et al., 2006), 
it can provide more utility in interpreting the subsurface characterisation. Figure 14 shows 
the step-by-step creation of the 3D model of the study area depicting the retrieved outlines 
of the uncertainties. For the estimated UQ, more comprehensive concepts on the spatial 
GWT pattern can be realised to avoid the relevant risk of facing aquifers during 
geoengineering projects.  

This study showed that the proposed ARDCW is a highly competitive UQ analysis 
method. It can be used as a standard computational and decision-making tool in civil 
engineering projects and the construction industry. This cost-effective and sufficiently 
accurate tool can reflect the potential risks associated with the distribution of spatial 
aquifers, thus preventing water inrush or facing underground geo-structures. Due to the 
ease of updating the ARDCW with new data, the flexibility of such models provides a 
preferred tool for geo-engineers and decision makers in the observation and analysis of 
geo-environmental engineering issues within a project. This implies that the presented 
GWT model offers an indispensable tool for decision makers in urban development 
projects, where substantial land surface processes can be encountered. However, the 
inherent complexities and potential computational costs in AI modelling still present an 
ongoing challenge. 

4.3 Analysis of spatial predicted DTB using AI-based models in geoengineering 
applications 

This section refers to the summary of the published paper by Shan et al. (2020), which 
discusses spatial analysis of predicted DTB using an AI-based model and geostatistical 
OK in geoengineering applications. Due to complex spatial patterns, associated 
uncertainties and sparse data, delineating and mapping the DTB and overlaid deposits is 
a vital and difficult task in geo-engineering applications. Modern computing techniques, 
such as AI-based models (AIM), are appropriate options to overcome the deficiencies of 
previous methods. The objective of this study is to investigate the feasibility of AIM in 
prediction of the 3D spatial distribution of subsurface bedrock surface in a large area in 
Stockholm, Sweden. The predictive AIMs were developed using 1,968 processed soil-
rock soundings, consisting of geographical coordinates and ground surface elevation. The 
aim of this study is to develop an optimum intelligent trained model using a finite set of 
DTB data to generalise the predictive ability for unseen observations. The data was 
randomised to 65%, 20% and 15% for training, testing and validation. The appropriate 
internal characteristics of an optimum model were adjusted through an examination of 
various training algorithms, activation functions and learning rates.  

Comparisons of the aggregation of AI and OK are shown in Figure 15 A and B. The 
differences between the measured and corresponding predicted DTB values are reflected 
in Figure 15C (AI) and D (OK). The histogram in Figure 15C shows that the number of 
differences with values close to zero when using the AI prediction model are more than 
the amount of zero values when using the OK model. 
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Figure 15. Comparison of the differences in (A) predicted values using AI and (B) OK. 
Residuals between measured and predicted data (C) AI and (D) OK. 

In this study, the applicability of artificial intelligence modelling using an artificial neural 
network to produce high resolution 3D geo-spatial bedrock surfaces was investigated. 
The developed optimum predictive AI model was then successfully applied on a road 
construction project in an area of Stockholm, Sweden. The AI model has shown that the 
differences between output and measured data for projects with limited drilled borehole 
data can be useful information for the planning of drilling locations. This issue becomes 
especially important in a situation where existing boreholes are scattered and there is a 
complex variation in the underlying DTB topography. 

4.4 Uncertainty analysis of predicted spatial subsurface DTB using an optimum 
AI model 

As presented by Shan et al. (2021), the outcome of predictive geo-engineering models 
includes uncertainties. Therefore, formal frameworks are needed for the UQ in order to 
assess the reliability of the models and reduce hesitancy in both computations and real-
world applications. In prediction processes, uncertainty originates from three main 
sources: modelling (describing the real system), numerical properties (mathematical 
equations) and data measurements. Considering the effect of uncertainties in subsequent 
forecasts, this study aims to address this challenge in a geo-engineering project using a 
sufficiently accurate spatial subsurface bedrock model. The optimum predictive model 
was captured through the design and development of an automated artificial neural 
network (ANN) training scheme, which was subjected to 1,967 geotechnical soil-rock 
soundings in Stockholm, Sweden. The evaluated UQ of the predicted bedrock levels 
represented different ways of comparing the true and predicted value at the same point.  
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Using UQ methods, the level of confidence for each measurement can be estimated. The 
UQ then enables proper judgments on the quality of the experiments and thus facilitates 
meaningful comparisons with other similar values or a theoretical prediction (Iman & 
Helton, 1988). Statistically, a process is in control if most of its variation falls within a 
certain range. The confidence interval (CI) is a computed range of observed data that 
covers the true future populations of a predictive model with a certain probability. It can 
also show the stability of the estimates, where the wider the CI, the more instable the 
estimate. The level of 95% means that 5% of the predicted value lies outside the CI.  The 
prediction interval (PI) shows the certain probability of an estimation of a future 
observation and is often used in regression analysis. Accordingly, a 95% prediction 
interval (PI) shows the certain probability of an estimation of a future observation and is 
often used in regression analysis. 

In Figure 16, the calculated error margins of CI and PI for training and validation datasets 
imply that most of the predictions fall within these limits. The point(s) outside the limits 
indicate the presence of non-random variation, which makes the process statistically 
unstable (Deng et al., 2012). To estimate the total uncertainty of a measurement, the UQ 
is formally performed through statistical metrics. The results of the developed optimum 
neural network model and the employed metrics for UQ showed the importance of the 
standard deviation (σ) of each experiment for both the measured and predicted values, 
where the lower the σ, the lower the uncertainty. This implies more confidence and thus 
higher reliability in the experiments. According to calculations, the values of ± 2.8 m and 
±12 m were considered as the uncertainty and error bias, respectively for CI and PI in the 
measured data.  

Figure 16. Estimated CI and PI for validation (A) and testing (B) dataset. 
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4.5 Visualisering av bergtopografi med AI 

Spatial distribution modelling of the depth to bedrock (DTB) is an important and 
challenging concern in many geo-engineering applications. Due to associating of DTB 
with the safety and economy of design structures, therefore, generating more precise 
predictive models can be of vital interest. Using JB soundings data for an area in 
Stockholm, an optimum visualized 3D predictive DTB model was created via an 
automated intelligent computing approach and compared with the ordinary Kriging (OK) 
geostatistical tool. 

The study area encompasses a 5 km stretch of 20 km ongoing NW-SE direction highway 
project (Tvärförbindelsen) in Stockholm, Sweden. This highway crosses the existing 
bedrock consisting mainly of sedimentary gneiss and metavolcanic rocks as well as 
pegmatite passages. In this study, 1968 JB soundings (Figure 17) were compiled in the 
area and randomized into 65%, 20% and 15% to generate the training, testing and 
validation datasets.  

Figure 17. Measured DTB using JB soundings (black points) superimposed on the 
DEM of the study area and satellite image from Google earth. 
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Figure 18. Results from optimum topology 

Table 3. Summary of the differences between measured and predicted values for OK 
and AI 

 

To obtain the optimum model, an automated learning process through an iterative 
procedure was developed. This approach using several embedded internal nested loops 
can automatically monitor a wide variety of hyperparameters for both shallow and deep 
neural networks. The result of automated procedure using different combination of 
hyperparameters showed the minimum error in a four layers model with 3-28-12-1 
topology (Figure 18). In this optimum topology, 3 shows the number of inputs variables 
(spatial coordinates of JB soundings), 28 and 12 denote the number of neurons in two 
hidden layers, while 1 expresses the number of output (the predicted DBT).   
The comparison between AI and ordinary kriging (OK) showed more true estimations in 
AI and thus higher predictability than OK. Table 3 shows the summary of differences 
between measured and predicted values for OK and AI. The average difference/point for 
OK is 7,4 m and 4,3 m for AI, which indicates that the predicted DBT is closer to the true 
bedrock level for AI modeling. It also shows that AI has 42% improvement than OK by 
looking at the differences between measured and predicted values.  
Due to the variation of bedrock topography, producing a more accurate 3D spatial 
predictive DTB model is of great importance to reflect the potential subsurface risks 
associated with geo-engineering projects. This demand in the current study was addressed 
using an automated AI system that showed improvement rather than traditional OK 
technique. AI has the potential to bring significant economic changes to industry as it can 
handle big data, present more accurate results and also is able be updated in real-time. 
Such characteristics provide a cost-effective tool for geo-engineers in subsurface DTB 
geo-spatial prediction purposes. The results also showed that the OK cannot be presumed 
to be the best DTB model for the entirety of the studied area. Practically, the presented 
3D predictive DTB model can present the boundary between the overlaid sediments from 
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the hard rocks. This issue can play a significant role in the design of shallow foundations, 
piling for the city of Stockholm, which has many ongoing projects in underground 
openings and transport tunnels.  

4.6 3D modelling and uncertainty analysis of DTB using hybrid automated deep 
learning 

The interest in creating high-resolution 3D subsurface geo-models for emergency use 
through multisource data retrieved, for example, from boreholes, through geophysical 
techniques, geological maps and rock properties is increasing and should be able to be 
updated at a later stage (Zhang et al., 2020). Therefore, the ability to accurately and 
meaningfully obtain an interpretable perspective from integrated heterogeneous nonlinear 
data requires the development of new methodology for convenient post-modelling 
analysis with a superior level of detail tied with geospatial information (Lee & Zlatanova, 
2007). Accordingly, when large amounts of geo data are produced, the characteristics of 
subsurface 2D spatial patterns need to be developed in 3D, where the more information 
there is, the more accurate the inference result will be (Günther, 2003). However, difficult 
obstacles arise due to the difficulty in managing large amounts of geo data and improper 
interpretations of laterally distribution in the geological model (Mayoraz et al., 1992). To 
manage the difficulties presented by big data, the application of skilled AIT in terms of 
shallow and deep neural learning networks (SNLNs and DNLNs), machine learning (ML), 
hybrid models and evolutionary algorithms have emerged as powerful tools across all 
geoengineering problems (e.g. Karpatne et al., 2018; Shahri et al., 2021a). Due to features, 
such as the ability to create transferable solutions and learnability from high-level data 
attributes, DNLNs are some of the most widely used systems for modelling and can create 
high resolution 3D geo models.  

From a geoengineering point of view, depth to bedrock (DTB), corresponding to the 
thickness of the sediments above the bedrock, is a crucial factor for the proper subsurface 
utilisation. Due to Sweden’s adherence to EU rules and the abundance of established 
infrastructure (e.g. transport tunnels, roads, railways), DTB is an important concern, 
where geotechnical knowledge can provide critical insights into the influence of the 
stability of the structures and transport of contaminants through gradient on bedrock 
surfaces (Shahri et al., 2021a). Therefore, the production of an accurate 3D visualised 
spatial DTB model not only facilitates the interpretation of sparse geotechnical 
measurements but also provides a valuable tool for the identification of optimum 
solutions and risk assessment (Gomes et al., 2016; Shan et al., 2021 MLRA). However, 
due to built-in uncertainties with geotechnical-based limitations, producing a high 
resolution 3D spatial DTB predictive model in geoengineering projects not only requires 
a different combination of data types, it is a critical task (Shahri et al., 2020, 2021a).  
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Figure 19. Location of study area and the location of acquired data datasets. 

In this study, geolocation of 644 datasets of different soil-rock soundings and geophysical 
investigations from Vårgårda-Bälinge in Sweden (Figure 19) were used in a hybrid 
automated DNLN procedure to generate a 3D spatial prediction of DTB (Figure 20, Block 
A) and UQ (Figure 20, Block B) (Shahri et al., 2021b). The UQ is addressed using the 
proposed, state-of-the-art novel ARDCW approach (Shahri et al., 2021b), which was 
implemented only on the stored weight database. The integrated system automatically 
monitors a wide variety of combined internal hyperparameters, leading to faster learning 
and minimising the risk of getting stuck in local minima or overfitting problems (Shahri 
et al., 2020). To prevent early convergence, a two-step termination criterion was 
considered: if the root mean square error (RMSE) as the priority is not achieved, then the 
number of iterations (set to 1000) is used (Figure 20, Block A). To evaluate the UQ, the 
optimum captured model is automatically retrained using switched off weight 
components to monitor the variation of the predicted output and subjected to different 
scenarios (Figure 20, Block B). This overcomes the challenges of computational costs for 
multiple training of complex topologies through different optimisers (Shahri et al., 
2021b). 
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Figure 20. The layout of the proposed hybrid automated approach to capture the 
optimum topology and UQ analysis. 

Figure 21a shows a series of results subjected to the implemented hyperparameters (Table 
4) in terms of the variation of minimum RMSE for the training stage. Using this process,
the risk of overfitting, early convergence and getting stuck in local minima will be
minimised; the DNLN topology with a structure of 3-20-15-1 is subjected to QN, and Hyt
can be selected as optimal. The subsequent predictability of the topology achieved using
the randomised datasets is reflected in Figure 21(b-d).
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Table 4. Hyperparameters used to monitor the optimum model 

Training algorithm 
(TA) 

Activation function 
(AF) 

Maximum number of 
hidden layers (user 

defined) 

Maximum number of 
used neurons (user 

defined) 

QP, CGD, AM, QN, 
LM, SGD 

Sig, HyT, Lin, Relu, 
SS 

3 35 

η: 0.7 with a step size domain within [0.001,1.000] interval 

Note QP: Quick propagation; CGD: Conjugate gradient descent; AM: Adaptive momentum; LM: 
Levenberg-Marqurdt; QN: Quasi Newton; SGD: Stochastic gradient descent; Sig: Sigmoid; Hyt: 
Hyperbolic tangent; Lin: Linear; Relu: Rectified linear unit; SS: Softsign 

 

  
Figure 21. Identification of the optimum topology for prediction of DTB through 

variation of RMSE (A) and corresponding predictability using training (B), testing (C), 
and validation data (D) (TR: training data; TE: testing data; VL: validation data; MAPE: 

mean absolute percentage error). 

Figure 22 shows the results of the UQ analysis in terms of the predicted error when the 
ARDCW (Shahri et al., 2021b) is used to achieve the optimum topology, where higher 
errors in predicted DTB result in greater uncertainties at data points. Figure 22 shows the 
predicted 3D subsurface spatial distribution model of the study area compared with the 
true scanned DTB data. The rock outcrops can then be identified through the generated 
overlaid ground surface and spatial scanned DTB, leading to a 3D subsurface model with 
high resolution and acceptable predictive accuracy in geo-engineering projects. Figure 
22b shows the contour map of the residual between the scanned and predicted DTB.  
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Figure 22. The created 3D model of the study area, comprising the overlaid ground 
surface with the lateral distribution of scanned and predicted DTB (a) and contour map 
of the residual between the scanned and predicted DTB using an automating system (b). 

Table 5 presents a comparison of QR, OK and DNLN as subjected to data from 75,715 
scanned rock surfaces to generate 3D models using general standard deviation (GSD), 
coefficient of determination (R2), RMSE and difference ratio (DR). Accordingly, a model 
with a lower DR, GSD, and RMSE and higher R2 indicates better performance. 

Table 5. Model evaluation using statistical error criteria 

Criteria Optimum 
DNLN 

QR OK 

RMSE 1.033 1.19 1.45 

GSD 0.0096 0.011 0.0134 

DR 0.996 1.003 1.010 

R2 0.91 0.88 0.82 

Precision (PR) shows how closely individual measurements agree with each other  and 
can be found using the normalised standard deviation (σ) on the magnitude of the results: 

𝑃𝑃𝑃𝑃 =
𝜎𝜎
𝑜𝑜𝚤𝚤�

× 100 

Where; ōi shows the mean of test results of applied models for scanned DTB; thus, the 
lower the PR, the more precise the outputs. The results of PR using data from 75,715 
scanned rock surfaces for the QR, OK and optimum DNLN are 0.031, 0.039 and 0.029, 
respectively. In addition to the validation datasets, Figure 23 shows the predictability of 
QR and OK and the optimum DNLN in creating the 3D model using scanned data, 
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Figure 23. Predictability of applied QR (A), OK (B) and optimum DNLN (C) models 
subjected to 75,715 scanned DTB in the study area. 

3D digital models provide more information compared to traditional methods, as they can 
help improve communication between engineers, contractors and their clients. Such 3D 
predictive geospatial models can show digitised geometric or topological objects based 
on the available factors, thus capturing the complexities of buildings and infrastructures 
that closely resemble the view of the finished project. 3D digital DNLN models can play 
a significant role when a project needs to undergo bidding and cost evaluations and all 
necessary resources need to be listed. This implies that due to the ability to capture the 
complexities of subsurface characteristics, improve visualisation, and facilitate the 
analysis of designs, 3D modelling is an important tool for the success of a geoengineering 
project. The results presented here show that 3D models that use DNLN can improve the 
visualisation capacity of geoengineers so that they can better analyse crucial structural 
elements in the design stages. This digital but flexible model allows geoengineers to add 
the coordinates of the infrastructure to modify inconsistencies in the plan. This will 
provide them with the opportunity to find a more applicable solution to address 
difficulties as they encounter them. The use of 3D models also enhances the tendering 
process and allows contractors to benefit from automated intelligent modelling, which 
yields higher quality construction at a lower cost. Furthermore, 3D models can more 
easily convey the use and advantages of a designed project, especially to those who have 
little knowledge of construction and engineering. Accordingly, by using 3D models, 
geoengineers can determine how to design a project based on natural and man-made 
aspects, which leads to the adoption of more appropriate structural elements and thus 
results in safer, more durable projects. 
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5. CONCLUSION 

In this study, deep learning is used to map spatial DTB and GWT and to estimate UQ from 
data measured in the field. For DTB modelling, different types of geo-data, including soil-
rock soundings, geophysical measurements and observed bedrock outcrops, were used. 
In the case of spatial modeling of GWT, the monitored groundwater tables from borehole 
measurements were employed. Since the GWT observation is continuous, a certain time 
interval (two weeks) is chosen that assumes no variation in the groundwater tables. To 
handle such inhomogeneous data, an automated AI-based model was developed for both 
prediction and UQ estimation through a deep learning technique. The proposed approach 
was then applied to model, analyse and produce the 3D spatial distribution of the 
compiled DTB and GWT data in Stockholm, Sweden to evaluate the uncertainty of the 
model; a state-of-the-art ensemble automated random deactivating connective weight 
approach (ARDCW) was proposed and developed. The proposed ARDCW was applied on 
GWT data, and the results were compared with MCD and QR techniques. According to 
the achieved ranking procedure, which was based on the applied statistical metrics, the 
proposed ARDCW (see 6.2) showed the highest scores and proved to be the best method 
for UQ analysis for this dataset. This approach is able to build time-dependent GWT 
models by simply selecting data from different time intervals. The comparison between 
AI deep learning and OK on DTB modelling (see summaries 6.1, 6.3, 6.5 and 6.6) shows 
that deep learning AI can generate a surface that is closer to the true surface. The UQ that 
used deep learning also shows superior performance, better estimation of uncertainties 
and covers more true values than the quantified uncertainty with OK (see summaries 6.4 
and 6.6).  

The achieved outcomes and interpreted results indicate that the developed AI models are 
feasible, cost-effective, economic and sufficiently accurate to be applied for geospatial 
DTB and GWT surface predictions. The automated deep learning modelling approach can 
provide more reliable 3D models that can help geoengineers gain better insights into 
crucial structural elements in the design stages (see summary 6.6). From an economic 
point of view, the generated high resolution 3D models can allow contractors to benefit 
from automated AI in the bidding process and thus lower construction costs. Furthermore, 
the generated 3D AI-based models can more easily support and explain the project design, 
especially to those who have little knowledge of construction and engineering.  

The result of this project was also implemented/integrated with a GeoBIM system to 
create an automated process for 3D bedrock surface modelling. The users of GeoBIM 
perform their own 3D bedrock surface modelling. This can assist all geotechnicians, rock 
engineers and engineering geologists who use bedrock surface models for decision 
making and project planning.  
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Abstract 

The interest in creating high-resolution 3D subsurface geo-models through multisource retrieved data i.e., 

borehole, geophysical techniques, geological maps, and rock properties for emergency responses is progressively 

increasing. However, dedicating accurate, meaningful, and thus interpretable 3D views from integrated such 

heterogeneous nonlinear data require developing new methodology for convenient post-modeling analysis. 

Therefore, in the current paper a hybrid automated deep learning-based approach for 3D modeling of subsurface 

geological bedrock using multisource data is proposed. The uncertainty was quantified using a state-of-the-art 

novel ensemble randomly automated deactivating process implanted on the stored weight database. The 

applicability of automated process in capturing the optimum topology with emphasizing on processing flow for 

description and analysis of 3D subsurface geo-modelling is then validated through the laser scanned bedrock 

level data in Sweden. In compared to intelligent quantile regression and traditional geostatistical interpolation 

algorithms, the accuracy of proposed hybrid approach showed high competence for visualize and post-analyze 

the 3D subsurface model. Due to using integrated multi-source data, the presented approach and created 3D 

model can be a representative reconcile of the geoengineering context.  

Keywords: 3D subsurface bedrock, deep learning, automated process, uncertainty, Sweden 

1. Introduction

In geoengineering practice, each drilled borehole is a type of geological diagram that can be used for 

stratigraphical description such as stratum thickness or lithology characteristics. Accordingly, the retrieved 

information from a series of boreholes in a specified area can lead to analysis and decision-making of subsurface 

conditions and mapping for various underground projects. Furthermore, the collected borehole data due to 

diverse sources need to be unified according to defined standards in each country. However, due to inability of 

borehole data in explaining the laterally distribution (Mayoraz et al., 1992) as well as significant increase of the 

volume of the datasets even if after unification, the result of geological model often conflicts with geological 

knowledge that requires for continually updating in the later stage (Zhang et al., 2020). Three-dimensional (3D) 

modeling mathematically expresses the digital coordinate-based representation of any surface of an object 

through specialized software or developed codes. Accordingly, the capacity of digital views of objects 

practically have been implemented in many site characterizations through subsurface formations and 

corresponding associated features in geoengineering applications (Houlding, 1994; Hack et al., 2006; Dong et 

al., 2015; Abbaszadeh Shahri et al., 2021a). Therefore, spatial distribution and maybe interrelationships of 

subsurface objects can intuitively be reflected in 3D perspective based on unified borehole and other surveyed 

datasets. This implies on great advantages of 3D geo-models in subsurface monitoring and thus corresponding 

associated attributed information for underground utilization and urban environment. Such computer models for 

the subsurface applications can transmit the represented objective to the visualizer with superior level of detail 

tied with in compare with 2D. However, 3D geospatial information always has been a challenge due to a variety 

of data, resolutions and required details (Lee and Zlatanova, 2007). In geoengineering practices, extension of a 

specified geological unit (e.g., rocks, lithological strata, mineralized area, hazard and risk, foundation design, 

tunnel routing, building, and planning) commonly is determined through borehole data on 2D cross-sections. To 

conceptualize the spatial patterns of subsurface characteristics, 2D geo-models need to be developed in 3D 

(Anderson et al., 2015; Mallet, 2008) complemented using supplementary test data, where the more information, 

the more accurate inference result (Günther, 2003; Perrin et al., 2005; Do Couto et al., 2014; Wu et al., 2015; 



Thornton et al., 2018; Abbaszadeh Shahri et al., 2020, 2021a, b). Nowadays, with the advent of huge of 

amount of produced geo data such 3D models can be used as an integrated carrier of geoengineering and 

environmental big data. 

Interpretation of sparse laterally distributed parameter in a geo-model from vertically constrained borehole data 

is a difficult obstacle (Mayoraz et al., 1992). Therefore, integrating the different qualified borehole data with 

numerical algorithms (Apel, 2006; Mallet, 1992) or cognitive interpretative approaches (Caumon et al., 2009; 

Schaaf et al., 2020; Ghaderi et al., 2019; Zhan et al., 2020) commonly are used to interpolate between 

observational points for the incorporation of expert geological knowledge. In this view, 3D interpolation of 

planar meshes (Xu and Tian, 2009), surface mesh generation (Frank et al., 2007) and triangulation algorithms 

(Chew, 1989) are considered as the most appropriate alternatives to handle discrete bore hole data (Abbaszadeh 

Shahri et al., 2020). However, applicability of these methods due to several challenging interactive human-

computer operations as well as time consuming process and maybe inapplicability in handling big data is still 

essential in the current geoengineering modeling methods (e.g. Turner, 2006; Niu et al., 2017; Kumar et al., 

2019; Lakshmanan, 2012).  

To tackle the difficulty of big data (Chen and Lin, 2014), application of skilled artificial intelligence techniques 

(AIT) in terms of shallow and deep neural learning networks (SNLNs and DNLNs), machine learning (ML), 

hybrid models and evolutionary algorithms have been emerged as a powerful tool in across all geoengineering 

problems to describe physically meaningful relationships within geoscientific data (e.g., Karpatne et al., 2018; 

Spina, 2019; Abbaszadeh Shahri et al., 2021a, b).The DNLNs due to characterized features such as creating 

transferable solutions and learnability from high-level data attributes (LeCun et al., 2015; Schmidhuber, 2015) 

are one of the most used systems for modeling (Toms et al., 2020; Abbaszadeh Shahri et al., 2020 and 2021a). 

Accordingly, the generated 3D visualized models using DNLN due to analytical capabilities can dedicate higher 

resolution, more flexible and vigorous tool than GIS and CAD systems (Mallet, 1992). This implies that in the 

current digital era developing scientific conceptual and 3D quantitative perspective of subsurface features for 

geoengineering applications through DNLN-based techniques are prime of concerns. However, there is no 

straight-forward answer on amount of actual enough data for training the system. The reason is referred to two-

folded task of the DNLN, as it needs to learn about the domain through the training algorithm from scratch and 

thus many parameters to tune (Abbaszadeh Shahri et al., 202, 2021a). Therefore, the robustness of DNLN-based 

predictive models should be evaluated in terms of different accuracy performance criteria and uncertainty 

quantification (UQ) analysis (Morgan and Henrion, 1990; Yan et al., 2015).  

Europe due the dense urbanization and variety of geological conditions needs for exploring sustainable use and 

management information of the subsurface in urban planning and development (Mielby et al., 2016). To 

overcome on challenges associated with sustainable cities and environmental regulations, the appropriate use of 

the subsurface in response to technology and socioeconomic demands have been highlighted (Athanasopoulou et 

al., 2019; Hooimeijer and Maring, 2018). From geoengineering point of view, depth to bedrock (DTB) 

corresponding to the thickness of the sediments above the bedrock is a crucial factor for the proper subsurface 

utilizing. In Sweden due to pursuing the EU rules and abundant of created infrastructures (e.g. transport tunnels, 

roads, railways), the DTB is an important concern, where geotechnical knowledge on it can provide critical 

insights into the influence of the stability of the structures and transport of contaminants through gradient on 

bedrock surfaces (Abbaszadeh Shahri et al., 2021b). Therefore, producing accurate 3D visualized spatial DTB 

model not only facilitates the interpretation of sparse geotechnical measurements but also provide momentous 

tool for identifying the optimum solutions and risk assessment (e.g., Gomes et al., 2016; Wei et al., 2016; 

Ghaderi et al., 2019; Abbaszadeh Shahri et al., 2021a, b; Yan et al., 2020). However, in geoengineering projects 

producing high resolution 3D spatial DTB predictive model due to incorporated uncertainties with geotechnical-

based limitations (e.g., access to an entire area, cost, distance between the soundings) not only requires for 

different combination of data types but also is a critical task (Gomes et al., 2016; Wei et al., 2016; Abbaszasdeh 

Shahri et al., 2020, 2021a).  

Traditionally, the produced geoengineering models reflecting the DTB have been generated by means of 

geostatistical techniques. These models due to the lack of computational system adopted for big geo-data and 

limited graphical power in complex problems often have been performed in less complex and small-scale areas. 

This point shows why developing modern computational AIT-based scheme for producing a more accurate and 

high-resolution 3D visualized subsurface model is highly motivated. Such demand with the advent of AIT 



technology and code developing can provide powerful new application to the requirements of the geo-engineers 

to address the modeling obstacles.  

The interest in developing 3D models (buildings or undergrounds) and geospatial data analysis in emergency 

management systems for field workers and decision makers is progressively increasing. Accordingly, in the 

current paper a developed automated DNLN procedure for generating the 3D spatial predictive of DTB for 

Sweden as a necessary part of 3D urban planning is addressed. This model was created using geolocation of 644 

datasets of different soil-rock soundings and geophysical investigations. In addition of using the randomized 

validation data, a number of 75715 scanned rock surface datasets also were separately fed for predictability 

assessment. Detailed analyses in compare with quantile regression (QR) (Bremnes, 2004) and geostatistical 

ordinary kriging (OK) (Wackernagel, 1995) showed that the proposed automating approach and corresponding 

optimum DNLN topology properly can dedicate a high-resolution 3D spatial predictive subsurface DTB map. 

The analyzed UQ also indicated competitive performance in using the optimum topology led to superior 

performance in compare with OK and QR.   

2. Study area and data source

The study area is located in the south-west of Sweden, close to Gothenburg city. The geotechnical data used in 

this study is collected along highway E20 between Bälinge and Vårgårda. Swedish transport administration is 

planning to build a new highway close to the old E20 by considering the currently problems with speed, traffic 

safety and environment influences. In the western part close to Bälinge, the proposed highway crosses rock 

outcrops, moraine, glacial clay, glacial deposits, and swell sediments.  The bedrock along the planned road 

consists mainly of gneiss and it has a higher content of dark minerals such as amphibole and biotite. Pegmatite, a 

granitic coursed-grained rock is found along almost the whole stretching of road route. The bedrock is general 

heterogeneous and complex compound. But at the end of the road route the bedrock becomes more homogenous 

and consists mostly of the so-called Vårgårda granite (Åsander, 2015). The fracture zones in the gneiss in this 

area is generally in east-west direction. However, close to Bälinge the fracture zones are in a northwest-southeast 

direction and close to Vårgårda they are more in northeast-southwest direction. The fracture planes are general 

dipping to the south which can possibly cause stability problem if rock cuttings are performed (Åsander, 2015).  

Figure 1.  Location of project area in Stockholm with the location of acquired geotechnical data (in red) 

superimposed on google earth image  

3. Model development process

3.1. Overview of DNLN structure

The concept of AITs is a simplified imitative learnable layout of human brain structure that aims to increase the 

computational power through the embedded connective processing elements. Referring to approved advantages 

of AI-based systems over traditional modelling approaches, they are largely growing in computer vision of 



geoengineering applications. DNLN is a subcategory of AIT that without being explicitly will scan the data to 

search combinable features for faster learning. This ability implies on great performance of DNLN with 

unstructured data (different formats such as texts, pictures, pdf, …) as well as exploring new complex features 

that human can miss and thus more capacity over ML to execute feature engineering (LeCun et al., 2015). Such 

process significantly will save the time. Accordingly, the analysis of UQ in DNLN can be described in the 

context of input variabilities, assumptions and approximations, measurement errors as well as sparse and 

imprecise data (Yan et al., 2015). However, all sources of uncertainty using these techniques for value-based 

judgements may not be quantifiable (Morgan and Henrion, 1990).  

As presented in Figure2, in a fully connected configuration of DNLN the output of the jth neuron in the kth hidden 

layer at the tth iteration, 𝑜𝑗
𝑘(𝑡), subjected to activation function, f, is defined as:

𝑜𝑗
𝑘(𝑡) = 𝑓(∑ 𝑤𝑖𝑗

𝑘 𝑥𝑖
𝑘−1(𝑡) + 𝑏𝑗

𝑘𝑛𝑘−1
𝑖=1 )      (𝑗 ≤ 𝑛𝑘)                                                                                           (1) 

Where; xi is the ith signal input with a connective weight of wij to the jth neuron in the kth hidden layer. nk shows the 

number of neurons in the kth layer, and 𝑏𝑗
𝑘 denotes the bias which shifts the summed signals received from the 

neuron.  

Figure 2. Simple configuration of DNLN architecture 

The weights and biases are then updated using corresponding error of the ith neuron in the kth hidden layers, 𝜌𝑖
𝑘(𝑡),

to minimize the prediction error by: 

∆𝑤𝑖𝑗
𝑘 (𝑡) = 𝜂𝑤 [𝑓̇ (𝑥𝑖

𝑘(𝑡)) ∑ 𝜌𝑗
𝑘+1(𝑡)𝑤𝑗𝑖

𝑘+1(𝑡 − 1)𝑗 ] 𝑜𝑗
𝑘−1(𝑡) + 𝛼𝑤Δ𝑤𝑖𝑗

𝑘 (𝑡 − 1)     (𝑘 = 1, 2, … , 𝑚 − 1)  (2) 

∆𝑏𝑖
𝑘(𝑡) = 𝜂𝑏[𝑓̇ (𝑥𝑖

𝑘(𝑡)) ∑ 𝜌𝑗
𝑘+1(𝑡)𝑤𝑗𝑖

𝑘+1(𝑡 − 1)𝑗 ] + 𝛼𝑏Δ𝑏𝑖
𝑘(𝑡 − 1)   (3) 

Where; 𝑓̇(𝑥𝑖
𝑘(𝑡)) is the first derivative of 𝑓(𝑥𝑖

𝑘(𝑡)) with respect to 𝑥𝑖
𝑘(𝑡). 𝛼𝑤  and 𝛼𝑏  express the momentum 

constants that determine the influence of the past parameter changes on the current direction of movement in the 

parameter space, and 𝛼𝑤 usually varies within [0.1, 1] intervals and is used to avoid instability in the updating 

procedure. 𝜂𝑤 and 𝜂𝑏 represent the learning rates.

the total error for the entire network, E(t), prediction error, 𝜀(𝑡), and the outcome of the lth neuron in the mth 

output layer, 𝑦̂𝑙, is then calculated using the updated weight by:

𝐸(𝑡) =
1

2
∑ (𝑑𝑗(𝑡) − 𝑜𝑗

𝑘(𝑡))
2

𝑛
𝑗=1  (4) 

𝑦𝑙̂(𝑡) = ∑ 𝑤𝑖𝑗
𝑚𝑥𝑖

𝑚−1(𝑡)     (𝑙 ≤ 𝑛o)
𝑛𝑚−1
𝑖=1         (5) 

𝜀(𝑡) = 𝑦 − 𝑦̂(𝑡)          (6) 

Where; dj(t) denotes the desired output of neuron j at the tth iteration. y and no represent the actual output and the 

number of neurons in the output layer respectively.  

3.2. Configuring the hybrid automated model monitoring 

In the current paper as presented in Figure 3, a hybrid automated approach comprising two blocks and several 

embedded inner nested loops accompanying with switch cases for subsurface 3D modelling was developed. 

Using block A (Figure3) the procedure monitors variety of combined internal hyper parameters as presented in 

Table (1). This was executed because in DNLN the need for adequate computing power and data for learning 

should be considered (Bengio, 2009). Such integrated components then allow system for monitoring different 



combinations of internal hyper parameters not only makes learning faster but also minimize to get stuck in local 

minima or overfitting problems (Abbaszadeh Shahri et al., 2020). To prevent the early convergence, a two-step 

termination criterion was considered in which if the root mean square error (RMSE) as the priority didn’t 

achieve then the number of iterations (set to 1000) is replaced. Accordingly, numerous captured shallow and 

DNLN even with similar topology but different hyperparameters can assist to improve the generalization of 

selected model for new examples (Abbaszadeh Shahri et al. 2021b; Kriegeskorte and Golan, 2019). To control 

the stability of the achieved topology, the UQ was estimated using a proposed state-of-the-art ensemble-based 

automated randomly deactivated weight database (ARDCW) approach as presented in block B (Figure3) 

(Abbaszadeh Shahri et al., 2021c). Deactivating approach solely is applied on the weight database of the 

optimum topology. Subsequently, the model automatically is retrained using switched off weight components to 

monitor the variation of predicted output subjected to different scenarios. Therefore, the challenges of 

computational costs for multiple training of complex topologies through different optimizers are overcome 

(Abbaszadeh Shahri et al., 2021c). 

Figure 3. The layout of proposed hybrid automated approach to capture the optimum topology and UQ analysis 

Table (1). Used hyperparameters to monitor the optimum model 

Training algorithm (TA) Activation function (AF) Maximum number of hidden 

layers (user defined) 

Maximum number of used 

neurons (user defined) 

QP, CGD, AM, QN, LM, SGD Sig, HyT, Lin, Relu, SS 3 35 

η: 0.7 with a step size domain within [0.001,1.000] interval 

Note➔ QP: Quick propagation; CGD: Conjugate gradient descent; AM: Adaptive momentum; LM: Levenberg-Marqurdt; QN: Quasi 

Newton; SGD: Stochastic gradient descent; Sig: Sigmoid; Hyt: Hyperbolic tangent; Lin: Linear; Relu: Rectified linear unit; SS: 

Softsign 

3.3. Results and created 3D model 

Considering the combination of employed hyperparameters, the optimum model was identified among more than 

2000 monitored and ranked topologies with different internal characteristics. A series of the results subjected to 

implemented hyper parameters (Table 1) in terms of the variation of minimum RMSE for training stage are 

shown in Figure 4a. Using this process, the risk of overfitting, early convergence and get stuck in local minima 



will be minimized because even similar topologies but with different hyperparameters are also examined. The 

overtraining problem also is detected when no improvements in the accuracy after a certain number of epochs 

can be observed (Abbaszadeh Shahri et al., 2021d). Furthermore, in automating procedure the best results among 

three runs of each model are saved. Referring to Figure 4a, the DNLN topology with structure of 3-20-15-1 

subjected to QN and Hyt can be selected as optimal. Subsequently, the predictability of achieved topology using 

the randomized datasets is reflected in Figure 4(b-d).    

Figure 4. Identifying the optimum topology for prediction of DTB through variation of RMSE (a), and 

corresponding predictability using training (b), testing (c), and validation data (d) (TR: training data; TE: 

testing data; VL: validation data; MAPE: mean absolute percentage error) 

Creating and simulation of the 3D model using AITs is an important priority for subsurface geoengineering 

purposes (e.g., Zhou C et al., 2019; Zhang et al., 2020; Abbaszadeh Shahri et al., 2020, 2021b). This is because 

the traditional method relies on the knowledge and experiences of experts in the selection of assumptions, 

parameters, and data interpolation methods which are subjective and limited (Randle et al., 2019). 

In Figure5, the step-by-step 3D modeling of the subsurface spatial DTB distribution for the study area in 

compare with the true scanned data is reflected. The rock outcrops then can be identified through the overlaid 

generated ground surface and spatial scanned DTB leading to a high resolution predictive 3D subsurface model 

with an adequate accuracy in geoengineering projects. In Figure5d, the result of analyzed UQ in terms of the 

predicted error using the ARDCW (Abbaszadeh Shahri et al., 2021c) for the achieved optimum DNLN topology 

is presented, where the higher errors in predicted DTB depict greater uncertainties at data points.  



Figure5. The created 3D model of study area comprising the (a) ground surface, (b, c) incorporated the 

lateral distribution of scanned and predicted DTB, (d, e) estimated UQ using ARDCW accompanying with 

the scanned and predicted DTB using automating system 

4. Discussion and validation
3D digital models provide more facilitates compared to traditional blueprints, as they can serve a way to improve 

communication between engineers, constructors, and their clients. Such models can play significant role when 

the project needs to undergo bidding and cost evaluation to list down all needed resources. This implies that for 

the success of a geoengineering project 3D modeling due to ability in capturing the complexities of subsurface 

characteristics, improving the visualization, and thus assisting for better analysis of designs are important tools. 

Furthermore, 3D models can convey the use and the advantages of a designed project easier especially to those 

who have little knowledge of construction and engineering.  

These descriptions show that the field practicability of each generated 3D model before use should carefully be 

evaluated in terms of different accuracy performance metrics. In this study the discussion on generated 3D model 

were presented through comparison of different analytical and evidential metrics with QR and traditional 

geostatistical ordinary kriging (OK). 



4.1. Precision performance 

Among the traditional geostatistical interpolation algorithms, the OK can serve spatial estimation when a 

variogram is known (Wackernagel, 1995). However, OK due to using the interpolation can only predict the DTB 

values within the range of observations while the QR and DNLN because of regression and considering the 

minimal squared error are able to predict even in outside of the tabulated domain. In mathematical point of view, 

an nth order polynomial for (n+1) DTB points can be obtained which passes exactly through all (n+1) data. This 

is the main reason why in training process the OK subjected to different variogram functions showed high R2 

(Table 2). Accordingly, during the training process the regression may not be as accurate as interpolated DTB 

within the observed domain but provide much better predictions in the range of below and beyond the 

observations. This reasonably describes why R2 of predicted data in OK significantly is varied (Table 2). 

Moreover, since OK statistically contains several parameters that can be justified by the data, the achieved 

results can be referred to overfitting (Everitt and Skrondal, 2010; Christian and Griffiths, 2017) while variability 

of variagram parameters made different predictions on the same dataset. This implies that the OK subjected to 

big data does not generalize well, and the predicted new values provide closely or exactly response to a 

particular set of data. 

Table (2). Summary of the OK results subjected to 8 to 14 lags and different variogram functions 

Variogram function R2 validation R2 prediction 

linear [0.92, 0.97] [0.73, 0.81] 

power [0.89, 0.96] [0.23, 0.78] 

Gaussian [0.88, 0.90] [0.08, 0.23] 

spherical [0.91, 0.96] [0.76, 0.80] 

exponential [0.88, 0.99] [0.79, 0.82] 

Moreover, for proper evaluation the model never should be trained with the entire dataset because of too much 

learning and saturation (Burnham and Anderson, 2002; Tetko et al., 1995). The results for such training lead to 

capture the noise in the data in addition to the signal and thus can cause wild fluctuations in the model that does 

not represent the true trend (Abbaszadeh Shahri et al., 2020). The predictability of applied models in terms of 

scatter plots is given in Figure6. 



Fiure6. Predictability of (a) QR, (b) OK, (c) optimum DNLN, and (d) calculated residuals subjected to 

scanned DTB 

The predictive models analytically are dependent to the precision and accuracy of applied techniques. This 

implies that the acceptability of implemented method can therefore be judged on the sizes of the observed errors 

relative to a defined total allowable error (TAE) (Lakshmikantham and Sen, 2005). According to Figure7 and 

using the standard deviation (SD) of scanned DTB, a value of 6.811 for the TAE for the applied model is 

achieved. Considering the SD of each model in predicted DTB, values of 6.07, 5.40 and 6.07 corresponding to 

QR, OK and DNLN is calculated. Therefore, in compare with the calculated residuals (Figure 6d), the OK has 

exceeded from the TAE which can be interpret as instability of this model in handling the big data. The precision 

of TAE then was supported using SD of calculate residuals with values of 1.15, 1.45 and 0.98 for QR, OK and 

optimum DNLN respectively.  

Figure7. Defining the TAE (SD: standard deviation, SE: standard error) 

According to Akaike’s information criteria (AIC) (Akaike, 1970) that penalizes appended terms to a model, 

additional variables that reduces RMSE and increases R2 are not appropriate to help guide the model choice. The 

goal is to find the model that minimizes AIC and for the regression can be calculated as: 



𝐴𝐼𝐶 = 2𝑃 + 𝑛 𝑙𝑜𝑔 (
𝑅𝑆𝑆

𝑛
)  

Where; P is the number of variables, n denotes the number of records and the models with k more extra variables 

are penalized by 2k. RSS as the residual sum of squares for OK, QR and optimum DNLN are 160000, 110899.5 

and 81984.45 respectively. In this point of view the second term of the AIC for OK, QR and optimum DNLN 

models stand for 24602.68, 12549.58 and 2615.91 respectively. Therefore, the high achieved R2 and thus low 

RMSE in training and validation of OK (Table 3) cannot lead for better performance than QR and optimum 

DNLN.   

4.2. Statistical error analysis 

In geoengineering purposes statistical analysis is an essential tool for the reliable interpretation of experimental 

results. Furthermore, the growing importance of decisions and opinions based on data can pivotally assess the 

quality of analyses and thus statistical error metrics can be used to decrease the decision risks. The results of the 

generated 3D models in terms of mean absolute percentage error (MAPE), variance account for (VAF), index of 

agreement (IA), general standard deviation (GSD), coefficient of determination (R2), RMSE and difference ratio 

(DR) are reflected in Table (3). Accordingly, the model with lower MAPE, DR, GSD, and RMSE as well as 

higher values of VAF, IA and R2 indicate for better performance. 

Table (3). Applied statistical error criteria to evaluate and compare the employed models 

Criteria Equation Optimum DNLN QR OK 

VL Pred VL Pred VL Pred 

MAPE 1

𝑛
× [∑ |

𝑝𝑖 − 𝑜𝑖

𝑡𝑖

| × 100

𝑛

1=1

] 
1.20 0.8 1.7 0.8 3.4 1.2 

RMSE 

√
1

𝑛
× [∑[(𝑝𝑖 − 𝑜𝑖)2]

𝑛

𝑖=1

] ×
100

𝑜̅

1.95 1.033 3.206 1.19 4.47 1.69 

VAF 
[1 −

𝑣𝑎𝑟(𝑝𝑖 − 𝑜𝑖)

𝑣𝑎𝑟(𝑝𝑖)
] × 100 

0.98 0.90 0.93 0.85 0.85 0.46 

GSD 𝑅𝑀𝑆𝐸

𝑝𝑖̅

0.0183 0.0096 0.0299 0.011 0.042 0.016 

DR 𝑝𝑖̅

𝑜𝑖̅

1.001 0.996 1.005 1.003 1.001 1.000 

IA 
1 −

∑ |𝑝𝑖 − 𝑜𝑖|𝑛
𝑖=1

∑ (|𝑝𝑖 − 𝑜𝑖̅| + |𝑜𝑖 − 𝑜𝑖̅|)
𝑛
𝑖=1

0.99 0.97 0.98 0.96 0.97 0.90 

R2 
1 −

𝑉𝑎𝑟 (𝑚𝑜𝑑𝑒𝑙 𝑒𝑟𝑟𝑜𝑟)

 𝑉𝑎𝑟 (𝑜𝑖)

0.97 0.91 0.95 0.88 0.90 0.82 

4.3. Comparing 3D visualized models 

In geoengineering applications, the interest of 3D models for emergency management responses is progressively 

increasing. Employing 3D models can help the geoengineers to determine early on the process all the necessary 

material involved for the construction of the project. Referring to high computational cost in available traditional 

modelling techniques, application of modern systems such as DNLN are motivated to represent and analyze 3D 

geospatial data for geoengineers, field workers and decision makers (Abbaszadeh Shahri et al., 2021b). 

Accordingly, in subsurface projects adding different level of stratigraphic or geological details are of great 

demand in application allowing visual representation of the interested geoengineering features (e.g. Mayoraz et 

al. 1992; Lemon and Jones 2003; Frank et al., 2007; Caumon et al., 2009). Such 3D predictive geospatial models 

can show the digitized geometric or topological objects based on the available featured factors leading to capture 

the complexities of buildings and infrastructures that closely resemble the view of the finished project. 

Accordingly, using 3D models the geoengineers can determine how to design the project based on the involved 

natural and man-made aspects which leads for more proper structural element adoption and thus making safer 

and stronger projects. An appropriate tuned DNLN can easily be adopted with new data to improve the 

diagnostic performance and computer vision modifications. It also can be supplied with future acquired data to 

reflect more details of the subsurface features. In this point of view, the predictability of applied models in 



creating spatial 3D views supplemented by residual contours in the outlines of the area subjected to 75715 

scanned DTB were compared and presented in Figure 8.  

Figure 8. 3D visualizing of applied methods by incorporating the predictive models and scanned DTB data for 

(a) optimum DNLN, (b) QR, and (c) OK 



4.4.2. Estimated UQ intervals in scanned DTB 

Despite the various 3D suggested advanced analysis methods in geoengineering problems (e.g., Murdie et al., 

2015; Zhang et al., 2021; Abbaszadeh Shahri et al., 2021c), the analyzed UQ due to used assumptions and 

propagated error in applied computational modelling technique can provide significant differences. Moreover, 

the problem associated with the generalization from a single study, difficulties in obtaining appropriate 

measures, and issues related to identifying the most accuracy for model representation should be considered 

(Abbaszadeh Shahri et al., 2021c). In this context, prediction intervals (PI) provide an indicator for the UQ of 

individual estimation. The PI has advantages over point estimates because of considering the variability in the 

data to provide a “reasonable” range of values for an observation (Chatfield, 1993; Meade and Islam, 1995). 

Therefore, PI must account for both the uncertainty in predicting the population mean, plus the random variation 

of the individual values (Lawless and Fredette, 2005), and thus it is always wider than a confidence interval. This 

implies that when the statistics cannot be employed to explain the future data, the UQ for the upcoming 

observations can be estimated using PI based on known populations of data. One of the main advantages of 

using PI is that it gives a range of likely weights and thus the modeler can have a sense of how accurate the 

predicted weight is likely to be (Hastie et al., 2001). In Figure 9, the estimated UQ intervals in terms of the level 

of 95% PI using ARDCW-DNLN, QR and OK for the scanned DTB area are presented. The distribution of 

classified UQ intervals lead to identify the sub-areas with higher uncertainties in which for reduction the need for 

more data and applicability of its corresponding in-situ test are highlighted. According to calculated PI, the 

ARDCW-DNLN with estimated UQ within [0.6, 5.2] showed narrower interval than OK and QR that depicts 

more concise results and thus higher accuracy. This implies that the bias and discrepancy of the OK, QR, and 

ARDCW-DNLN can be interpreted through the comparison of the estimated UQ in terms of PI. 

Figure 10. Comparative UQ analysis of the applied methods at a level of 95% PI for (a) OK, (b) QR and (c) 

optimum DNLN. 

Concluding remarks 
Referring to growing field of 3D modelling, an advanced predictive hybrid automated DNLN for visualization 

and UQ analysis using multi source geo-data in Sweden was proposed and developed. The presented automated 

DNLN framework can highly be benefited for subsurface geo-engineering applications through incorporating the 

accurate predictive spatial DTB with geological and geomechanical features. There different models using 



proposed automated DNLN framework, QR and OK subjected to 65% of randomized 644 multisource datasets 

were trained. The predictability of captured optimum DNLN topology with structure of 3-20-15-1 then was 

compared with QR and OK using 75715 scanned DTB to provide better interpretation and easy convenient for 

post-modeling analysis. To evaluate the precision of applied models, the calculated TAE was supplemented by 

SD of calculate residuals. It was observed that the residual of OK in compare with the calculated TAE in 

predicted DTB is exceeded which can be referred to instability of this model in handling the big data. In a 

mathematical point view the reason for high R2 in training the OK and then significant variation in prediction of 

big data were discussed and concluded that this traditional interpolation geostatical method cannot generalize 

well in predicting of the big data. Referring to AIC in penalizing appended terms to a model, it was approved that 

the high achieved R2 and thus low RMSE in training and validation of OK cannot lead for better performance 

than QR and optimum DNLN. Comparison of the applied models using different statistical metrics also showed 

DNLN can provide better results than QR and OK. Provided maps subjected to 95% PI for the scanned DTB 

revealed the narrower UQ estimation using ARDCW-DNLN within [0.6, 5.2] depicting more precise results and 

thus higher accuracy.  

The presented 3D model can improve the visualization of geoengineers for better analyzing of crucial structural 

elements and thus better insights into the project based on the involved natural and man-made aspects leading to 

safer design stages. Using such digital but flexible model enable them to add the coordinates of the infrastructure 

to modify the inconsistencies of the plan without requiring to blueprints. This issue will give them the 

opportunity for dedicating more applicable solution to fix the difficulties in a right way. Using 3D models also 

enhance the bidding process and allow contractors to benefit from the automated intelligent modeling to yield 

higher quality and less expensive construction. The results approved those technological advancements using 

DNLN in geoengineering sectors dedicate easier task accomplishment and thus better outcomes. Although, 

DNLN still needs to overcome a few challenges before becoming a more versatile tool in real-world and thus 

geoengineering applications, but it is expected for large making investments to further technology in solving 

more complex problems in the future. The adopted 3D models not only speeds up the design process but also 

enable geoenginners and decision makers play around with different ideas and identify potential design problems 

before they become actual issues. This implies that 3D modeling in construction can put all the phases together 

and dedicate a real view of the finished project. Swedish agencies also can provide 3D design data to potential 

bidders, or contractors to develop their own models for use during construction. 
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