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PREFACE

This report presents one of the first projects in which AI has been specified for
geoengineering application on the bedrock and groundwater surface modelling. The given
automated procedure and uncertainty quantification approach using Al techniques offer
tremendous potential for geo-related industries and big data analyses. This can lead the
Al users to more efficient and reliable production and hence more flexible models.
Obviously, the Al is impacting the future of virtually every industry and every human
being. It may even become the language of daily life in the future as the main driver of
emerging technologies like big data, robotics, automation etc. The project results show
good results and promise a very interesting future.

Additional to the authors the following co-workers from Tyréns made valuable
contributions to the project: Emma Zéll, Jennifer Wénseth, Olof Friberg, Lars Marklund,
Beatriz Machado, Maria Duvaldt, and Ida Samuelsson.

Reference group members who provided valuable comments and suggestions was
composed of Per Tengborg (BeFo), Robert Sturk (Skanska), Torleif Dahlin (LTH), Olle
Bételsson (Trafikverket), Mats Svensson and Rikard Gothill (Tyréns), Alireza Malehmir,
(Uppsala University), Diego Mas Ivars (SKB), Paul Evins (WSP), and Fardad Maghsoudi
Moud (Twente University, Netherlands). The report was reviewed by the reference group
members and additionally by external scientist, Dr. Mohammad Khorsand Zak from the
Islamic Azad University, Iran. An expert in the field of computational mathematics and
soft computing approaches.

The project was co-funded with BIG (Branschsamverkan I Grunden), Tyréns, and KTH.

Stockholm 2022
Patrik Vidstrand
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FORORD

Denna rapport presenterar ett av de forsta projekten dir Al har specificerats inom
geoteknik, i detta fall for modellering av berggrunds- och grundvattenytor. Det
automatiserade forfarandet och metoden for kvantifiering av osékerhet som Al-tekniken
erbjuder har en enorm potential for georelaterade industrier och big data-analyser. Detta
kan ge Al anvdndarna mer effektiva och tillférlitligare produktion och mer flexibla
modeller. Uppenbarligen paverkar Al framtiden for praktiskt taget alla branscher och
varje minniska. Det kan till och med bli vardagsspraket i framtiden och fungera som
drivkraft for framvixande teknologier s& som big data, robotik, automation etc.
Projektresultaten visar goda resultat och lovar en mycket intressant framtid.

Utover forfattarna har foljande medarbetare fran Tyréns gjort vérdefulla bidrag till
projektet: Emma Zall, Jennifer Wénseth, Olof Friberg, Lars Marklund, Beatriz Machado,
Maria Duvaldt och Ida Samuelsson.

Referensgruppsmedlemmar som ldmnat virdefulla kommentarer och forslag bestod av
Per Tengborg (BeFo), Robert Sturk (Skanska), Torleif Dahlin (LTH), Olle Batelsson
(Trafikverket), Mats Svensson och Rikard Gothéll (Tyréns), Alireza Malehmir, (Uppsala
University), Diego Mas Ivars (SKB), Paul Evins (WSP) och Fardad Maghsoudi Moud
(Twente University, Nederlinderna). Rapporten granskades av referensgruppens
medlemmar och dessutom av en extern forskare, Dr Khorsand Zak fran Islamic Azad
University, Iran; en expert inom omradet berdkningsmatematik.

Projektet samfinansierades med BIG (Branschsamverkan I Grunden), Tyréns och KTH.

Stockholm 2022
Patrik Vidstrand
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SUMMARY

Due to complex spatial patterns and sparse data, delineating and mapping bedrock levels,
groundwater tables and overlaid deposits are essential but difficult tasks in geo-
engineering applications. The outcomes of predictive geo-engineering models also
contain uncertainties. Therefore, formal frameworks are needed for uncertainty
quantification (UQ) to assess the reliability of the models and reduce hesitancy in both
computations and real-world applications. Modern computing techniques, such as
artificial intelligence-based models (A7), provide alternatives to overcome the
deficiencies of currently used methods. The objective of the present study is to investigate
the feasibility of A7 in the prediction of 3D spatial distribution of subsurface bedrock
levels and groundwater tables in large areas in Stockholm, Sweden. This study also aims
to address the uncertainty quantification challenge in geo-engineering projects by using
spatial A/ models with a sufficient degree of accuracy. Two datasets from road
construction projects (Tvérforbindelsen and E20 Bilinge-Vargarda) were used for the
prediction of bedrock and groundwater surfaces and uncertainty quantifications. From the
comparison of the predicted surfaces obtained using the A7 and the Ordinary Kriging (OK)
geostatistical method, it was found that the A7/ method more accurately predicted spatial
3D surface and provided more appropriate predictions at any point in the subsurface than
the OK method. Three A/ uncertainty analysis methods, Monte Carlo Dropout (MCD),
Quantile Regression (OR) and Automated Random Deactivating Connective Weights
(ARDCW), were tested in this study and then compared with the OK method. These A7
uncertainty methods (e.g. MCD and QR) are not extensively used in bedrock and
groundwater surface modeling, and ARDCW is a novel, state-of-the-art ensemble method
proposed in this study. The results showed that a UQ analysis based on 4/ methods can
quantify uncertainties more accurately and contains more true values inside of the
intervals than the OK method. It was also shown that the MCD method consumes more
computational time, and the estimated uncertainties are not as accurate as QR and
ARDCW. The QR and ARDCW methods have both demonstrated superiorities in the
estimation of uncertainties from the two tested datasets. Therefore, the results have
provided more possibilities for the use of QR and ARDCW for future uncertainty analysis
in bedrock and groundwater modelling. The results also showed that the A7 method is a
flexible and efficient alternative approach that can account for the associated uncertainties
for mapping the spatial distribution of the depth to bedrock (D7B) and groundwater table
(GWT) surface.

Keywords: Spatial bedrock distribution, groundwater modelling, artificial intelligence
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SAMMANFATTNING

Pé grund av komplexa rumsliga monster och glesa data &r en viktig och svar uppgift i
geotekniska  tillimpningar att avgrinsa och Kkartligga  berggrundsnivéer,
grundvattennivaer och Overlagrade jordavlagringar. Resultatet av prediktiva geo-
ingenjorsmodeller innehaller ocksé osdkerheter. Déarfor behdvs ramverk for kvantifiering
av osdkerheter (UQ) for att kunna beddma modellernas tillforlitlighet och minska
osikerheten i bade berdkningar och verkliga tillimpningar. Moderna berdkningstekniker
sasom artificiell intelligensbaserade modeller (AI) &r lampliga alternativ for att overvinna
bristerna med for narvarande anvianda metoder. Syftet med denna studie ar att undersoka
genomforbarheten med Al for att fOrutsiga 3D rumsliga fordelningar av
berggrundsnivaer och grundvattennivaer for stora omraden i Stockholm. Denna studie var
ocksd motiverad att ta itu med utmaningen med att kvantifiera osdkerheter i geo-
ingenjorsprojekt genom att anvénda adekvata och noggranna rumsliga Al-modeller. Tva
uppsittningar av data fran projekten Tvérforbindelsen och E20 Bailinge-Vargarda
anvindes for forutsdgelse av berggrundsnivaer och grundvattennivaer och kvantifiering
av tillhorande osédkerheter. Fran jamforelsen mellan de forutsagda ytorna fran Al och den
geostatistiska metoden Ordinary Kriging (OK), fann man att Al-metoden kan forutséga
mer korrekta rumsliga 3D-ytor och ge mer ldmpliga forutsdgelser vid vilken punkt som
helst i modellerna. Tre metoder anvindes for berdkning av osikerheterna tillhérande Al-
analyserna och jamfordes med OK-metoden: Monte Carlo Dropout (MCD), Quantile
Regression (QR) och Automated Random Deactivating Connective Weights (ARDCW).
Dessa metoder saésom MCD och QR har inte i ndgon utstrackning anvants och ARDCW
ar en ny foreslagen toppmodern metod som utvecklats i denna studie. Studien visar att
UQ-analys baserad pd Al-metoderna kan kvantifiera osdkerheterna mer precist och
innehélla mer korrekta virden i de studerade intervallen dn OK. Det pavisas ocksé att
MCD-metoden forbrukar mer berdkningstid och de uppskattade osékerheterna ar inte lika
korrekta som QR och ARDCW. Dirfor har resultaten gett fler mojligheter for QR och
ARDCW som kan anvénds for framtida osdkerhetsanalyser. Resultaten visar att Al-
metoder dr flexibla och &r effektiva alternativa tillvigagangssatt som kan ta hénsyn till de
associerade osdkerheterna for att kartligga den rumsliga fordelningen av djupet till
berggrunden (DTB) och grundvattenytan (GWT).

Nyckelord: Bergtopografi, grundvattennivaer, modellering, artificiell intelligens
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1. INTRODUCTION

1.1 Background for bedrock surface modelling

Understanding the subsurface of our earth is important for many different applications
within the geosciences. The creation of three-dimensional models can assist with the
understanding of a conceptual and quantitative model of the subsurface. The depth to
bedrock (DTB) provides valuable information for both the design and construction phase
of many projects. Unexpected conditions of DTB can cause delays and influence
estimated costs, resulting in increased risk. The information on DTB is usually obtained
from sparse measurements, such as borehole drilling or continuous 2D profiles (e.g.
geophysical measurement). In Sweden, soil-rock soundings (/B sounding) are usually
carried out to obtain the DTB. Despite the accuracy of soil-rock sounding in determining
the DTB, this method suffers from high costs related to drilling and is a time-consuming
process, which can only give the DTB at sparse points. Geophysical methods are less
costly and can usually cover a larger part of the study area, but the DTB figures obtained
from geophysical profiles are not exact and contains uncertainties (e.g. Fournier et al.,
2013). These figures need to be correlated with information from direct geotechnical
methods, as data are generally interpreted qualitatively, and useful results can only be
obtained by experts familiar with the particular testing method (Shahri et al., 2021a). The
ability to use limited bedrock information to create an accurate prediction of the rock
surface with the same number of boreholes is valuable and attractive (Machado, 2019;
Shan et al., 2020 CAJG). To estimate the DTB at unsampled locations, interpolation and
extrapolation is often needed. This is usually performed by using mathematical methods.
Kriging interpolation is one of the most commonly used interpolation methods in the
fields of geology and hydrology (Samui & Sitharam, 2011; Viswanathan et al., 2014;
Kittered, 2017; Li et al., 2020) and is generally considered to produce good fitting
surfaces for a variety of datasets (Kitanidis, 1997). Other examples of commonly used
interpolation methods are inverse distance weighting and minimum curvature (Li & Heap,
2014). As each interpolation method has its own characteristics and level of complexity,
results produced using different techniques can differ for the same data. In the literature,
interpolations are commonly evaluated according to how accurately the modelled dataset
fits to the measured dataset (Li & Heap, 2014). However, the sources of uncertainties
related to model parameters, underlying conceptual assumptions, structure of model,
geological conditions and observed spatial data (i.e. lack of data on natural variability)
cannot be quantified by these methods (Shahri et al., 2020).

1.2 Background for groundwater surface modelling

Groundwater is defined as the water that completely fills the pore spaces in soil and the
fractures in rock (Todd & Mays 2005; Hu & Jiao, 2010; Tang et al., 2017; Salvo et al.,
2020). Approximately 30% of all freshwater on earth occurs as groundwater (Nordstrém,
2005). Groundwater is an important source of drinking water in many parts of the world.



Furthermore, the occurrence of groundwater affects the geotechnical stability of soils, as
a lowering groundwater table may cause subsidence (SGU, n.d.). Over the past several
decades, the use of groundwater modelling has increased as a means to better evaluate
the complexities inherent in hydrogeological calculations. Information required for
groundwater modelling includes the elevation of soil and bedrock layers and the
groundwater table (Agerberg, 2020). This data is usually collected in a limited number of
sample points, both due to practical and economic reasons. In order to approximate values
in unknown points, known values in measured sample points can be interpolated over the
study area (Kitanidis, 1997). This is usually performed using mathematical methods, such
as Kriging, inverse distance weighting and minimum curvature as mentioned above. In
this report, only the surface of the groundwater table (GWT) is considered for modelling.

1.3 Al modelling

In recent years, A/ techniques have shown remarkable computational and learning
capabilities in addressing geotechnical problems. As DTB and GWT modelling deal with
various uncertainties (Shahri et al., 2020; Hood et al., 2019), the subcategories of A/
techniques are appropriate alternatives to overcome the limitations and simplifications
(e.g. Hegle et al., 2017; Chang & Chao, 2009; Shahri et al., 2021a). Furthermore,
hybridizing the A7 techniques with metaheuristic algorithms can significantly optimise
the model performance. A7 is currently being used for systematic uncertainty analysis that
can be effectively applied to generate DBT and GWT models. It can account for
uncertainties related to model parameters, underlying conceptual assumptions, structure
of model, geological conditions and observed spatial data. For more reading about A/,
Marsland (2018) is recommended.

1.4 Benefits of more accurate modelling

DTB measured as the thickness of the sediments above the bedrock plays an important
role in many different contexts. One example is the mining industry, where the
information on DTB can help in cost estimation for underground mining. Another
example is infrastructure projects, where information on D7B can help in subsurface geo-
engineering modelling and risk assessment (Kitterod & Leblois, 2019; Shahri et al., 2020;
Shan et al., 2021 MLRA). These imply that producing highly accurate predictive DTB
models is a critical task that can have significant effects on the costs and risks of geo-
engineering projects. Accurate modelling of the DTB at unsampled locations can also
save on costs for extra and unnecessary borehole drillings, which are usually very
expensive to carry out. In recent years, the uncertainty of the estimated DTB has been
noted by many engineers (e.g. Trafikverket) due to the risk of failures in infrastructure
projects (Shahri et al., 2021a). Inaccuracies in the predicted DTB can have a significant
financial impact when there is a failure to plan for the worst case scenario (Carlsson,
2005; Koc et al., 2020). The advantage of A/ modelling is that it is a flexible and efficient
alternative that can account for associated uncertainties, thus creating more accurate



spatial 3D models and providing an appropriate prediction at any point in the subsurface
(Shahri et al., 2020; Shan et al., 2021 MLRA).

With increasing pressure on groundwater resources due to human activity and climate
change, accurate and reliable predictions of flow and groundwater table are essential for
sustainable groundwater management practices. Accordingly, GWT modelling is often
required to simulate the impacts of management scenarios on groundwater resources. It
can help to evaluate the costs, benefits and risks of a proposed water resource
development plan and it has been shown to be useful in a variety of groundwater related
engineering problems and as a support in decision making. Accurate GWT modelling can
help in slope stability analysis, planning of additional safety elements when groundwater
table changes, and in the prediction of groundwater depletion.

1.5 Aims

e Automated Al-based model for the analysis of geotechnical sounding;
geophysical and GWT data to study the spatial distribution of bedrock and
groundwater surfaces

e Estimated uncertainties in the predictive GWT and DTB models

e Comparison of the A4/ modelling method with traditional geostatistical
interpolation techniques, such as Ordinary Kriging (OK)
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2. DATA SOURCE AND STUDY AREA
2.1 Tvirforbindelsen

Data used for the GWT modelling was from the Tvéarforbindelsen project. The study area
consists of a 20 km stretch of an ongoing highway project in Stockholm, Sweden and
contains more than 300 investigated groundwater wells. For the monitored GWT data,
244 points were available and selected from continuous recorded intervals from 19 to 25
September 2020 in a 5 km x 5 km area as shown in the digital elevation map (Figure 1A),
where we modelled the GWT from the input data as presented in Figure 1B (black dots).
Figure 1C shows the distribution of measured geotechnical borehole data that is used for
DTB modelling.

2.2 E20 Bilinge-Vargarda

Trafikverket has expanded E20 between Bélinge-Vargarda to build a new highway with
crossings due to an increased traffic load and safety concerns. In this project, Tyréns has
drilled more than 200 soil-rock sounding boreholes, mapped the bedrock outcrops and
carried out geophysical measurements to study the bedrock levels in the area. See Figure
2 for the distribution of borehole locations and geophysical profiles. All these data were
used as the input data for deep learning modelling. In part of the studied area, the
overlaying soil was excavated, and the bedrock surface was fully uncovered. This
uncovered bedrock surface was later scanned using airborne lasering scanning to get the
point cloud for the true bedrock surface. We were therefore able to compare our results
from deep learning modelling with the true scanned bedrock surface. There are around
46,000 points to represent the uncovered bedrock surface.
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Figure 1. The overlaid digital elevation map and satellite image of the study area (A);
the mapped aquifers from SGU (green) and monitored GIWT data in the area (B); and
the colour map of spatial distribution of drilled geotechnical boreholes showing the
information DTB information (C).
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Figure 2. The spatial distribution of drilled geotechnical boreholes and geophysical
profiles. Different colours indicate the D7B information at each borehole.

3. METHODOLOGY AND APPLIED TECHNIQUES

3.1 Deep learning

Deep learning is part of the broader family of machine learning methods based on
artificial neural networks. It attempts to mimic the human brain and enables systems to
cluster data and make predictions with high accuracy. In this study, predictions made
through deep learning are used to predict bedrock levels and groundwater tables at
unsampled points. Figure 3 shows the structure of deep learning networks used in this
study. The input layers contain three variables: X (northing), Y (Easting), Z (Ground
surface level). The optimum A4/ model was achieved using an automated process in which
numerous topologies corresponding to a wide variety of different internal
hyperparameters and numbers of neurons were monitored. The results showed that using
40 neurons in an arrangement with 28 in first layers and 12 in second hidden layers
provides the best performance and can be used to predict the DTB at unsampled locations
(Figure 4). This model is technically presented as 3-28-12-1, showing the three used
inputs, two hidden layers with 28 and 12 neurons and one output as the predicted D7B. A
more through description of deep learning can be found in the book Introduction to Deep
Learning (Charniak, 2019).

3.2 Uncertainty analysis

Since the predicted value (interpolated levels) lacks certainty, there is always uncertainty
imbedded in the predictions. These uncertainties can be caused by a lack of DTB
information and knowledge, errors in the measured data, and the mathematical modelling
process. Estimating the uncertainties of the predicted DTB is very important for



infrastructure building projects, due to the impact of uncertain levels. A good estimation
of the DTB can decrease the level of uncertainties. This can help in project risk
management, construction material planning and project control, thus reducing conflicts
among various parties. Therefore, in the current study, we examined three uncertainty
analysis methods in deep learning to quantify the uncertainties in the predicted values.
Figure 5 illustrates the prediction interval, while Figure 6 shows the taxonomy of the
employed uncertainty quantification (UQ) methods.
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Figure 3. Deep learning neural networks with two hidden layers. Source:
https://towardsdatascience.com/coding-neural-network-forward-propagation-and-
backpropagtion-ccf8cf369f76
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3.2.1 Monte Carlo Dropout (MCD)

The application of MCD in deep learning-based analyses was originally introduced by
Gal and Ghahramani (2016). In this process, the neurons randomly become disabled, and
thus in each training step, a different subset of the network architecture is evaluated and
adjusted. This kind of randomness is also introduced to the prediction process. The MCD
was performed in multiple trained networks to get a distribution of the output value, and
this distribution was used to estimate the uncertainties. Figure 7 illustrates the MCD. The
number of disabled neurons is the user-defined value and is 20% in this study. For more
in-depth information about MCD, Seoh (2019) is recommended.

= O 0

e S z O
XK O
N . e 8

Oiﬂ

Figure 7. Illustration of Monte-Carlo Dropout, which randomly disables networks
during training and prediction time. Source: https://www.inovex.de/de/blog/uncertainty-
quantification-deep-learning/

p

3.2.2 Quantile Regression (OR)

The QR allows us to understand relationships between variables outside the mean of the
data, making it useful in calculating out the outcomes that are non-normally distributed
and that have nonlinear relationships with predicted variables. Figure 8 shows an example
of different estimated quantiles for a simulated dataset. The 90% prediction interval is
between Q (0.05) and Q (0.95). For more information on OR, see Koenker and Hallock
(2001).

3.2.3 Proposed novel automated random deactivating weight (ARDCW)
approach

The ARDCW is a novel state-of-the-art ensemble method that was proposed during this
study. Instead of dropping neurons, which is the approach used in the MCD, the
connective weights between layers are randomly deactivated. Therefore, the ARDCW is
solely focused on randomly switched off weights, not neurons, where the remaining
weights are forced to participate in learning processes and assist in decreasing the
overfitting. As presented in Figure 9, the deactivation is performed several times without
changing the structure of the network; therefore, each run of the model through the
deactivated weights is performed solely with the previously identified optimum model.
This implies that unlike the MCD, the optimum model will not be changed. To overcome
the overfitting problem and avoid being trapped in local minima, the ARDCW uses several


https://www.inovex.de/de/blog/uncertainty-quantification-deep-learning/
https://www.inovex.de/de/blog/uncertainty-quantification-deep-learning/
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embedded internal and nested loops to monitor all the topologies based on different
hyperparameters. Accordingly, this approach uses an optimum trained topology capable
of performing a given task even when the weights are randomly sampled. This implies
that the training of multiple different topologies is avoided, as the uncertainty will be
estimated by changing the internal assigned weights of a fixed optimum model. The
number of deactivated weights is a user-defined value, and the upper band of 50% of the
total amount of weights was used in this study. More details on developed theories and
information on this approach can be found in our summary of Paper 2 (section 4.2) and
in the reference list (Shahri et al., 2021b).

0.05)
= Q(0.10)
— Q(0.30)

0 2 4 6 8 10

Figure 8. This example shows the different estimated quantiles. The 90% prediction

input layer

interval is between Q (0.05) and Q (0.95). Source:
https://hackmd.io/@cgarciae/quantile-regression.
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Figure 9. Illustration of ARDCW with two hidden layers. Modified from source:
https://towardsdatascience.com/coding-neural-network-forward-propagation-and-
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4. SUMMARY OF PUBLISHED PAPERS

4.1 Development of an automated predictive A model for spatial DTB
distribution

Modelling the spatial distribution of DTB is an important and challenging concern in
many geo-engineering applications. This section presents a summary of Shahri et al.
(2021a), which presents a developed automated predictive 47 model through a deep
learning procedure. In their study, 47 was applied in a road building project in Stockholm,
Sweden to build a 3D spatial DTB model. The process was developed and programmed
in both C++ and Python to track their performance in specified tasks and to cover a wide
variety of different internal characteristics and libraries. Two different programming
languages (Python and C++) have been considered in order to provide access to different
internal hyperparameters, such as activation functions and training algorithms for testing
and capturing the most suitable deep learning topologies. The results from A/ were
compared with ordinary kriging (OK), and the superiority of the developed automated A7
system was demonstrated through confusion matrices and the ranked accuracies of
different statistical errors. The results showed that the intelligence models can create more
accurate spatial 3D models and provide an appropriate prediction at any point in the
subsurface of the study area (Shahri et al., 2021a).

The characterisation of DTB profiles is commonly interpreted by using sparse number of
geotechnical soundings in and around a desired area. The dataset used in this study is
from Tvérforbindelsen (section 2.1). In total, 1,968 data points from soil-rock soundings
were used for DTB modelling. This area consists mainly of fine to coarse-grained gneiss
of sedimentary origin and medium to coarse-grained metavolcanic rocks, as well as
occasional coarse-grained pegmatite passages. Sedimentary gneisses generally dominate
in the area.

To find the optimum model that can best describe the characteristics of the input data, an
automated iterative procedure was developed through both C++ and Python to monitor
as many different combinations of deep learning hyperparameters as possible (Shahri et
al., 2021a). This implies that the optimum models are screened among numerous
examined structures, even those with similar topologies but different internal
characteristics. Accordingly, the variation of network RMSE using 40 neurons in different
topologies, starting from 3-1-39-1 to 3-39-1-1, is reflected in Figure 10. A summary of
the results shows that the 3-28-12-1 and 3-25-15-1 can be selected as optimal topologies.
Models can be subsequently trained based on these topologies and used for predictions of
DTB at unsampled locations.

Geostatistical and A7 techniques can generally be used as forecasting strategies of
subsurface or geological characteristics. However, because of the high heterogeneity of
spatial distributions in the prediction process, the success of the geostatistical
interpolation algorithm was significantly lower than A/ models, as shown in Figure 11
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(A, B and C). Subsequently, Figure 11 (D, E, F) shows the differences between the
measured DTB and what was predicted by the OK and A7 models.
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Figure 10. Variation of network RMSE for developed optimum models using C++ and
Python as a function of network topologies.

Statistical error metrics are commonly used to evaluate the performance of models. As
shown in Table 1, C++ contributed the best total rank among the three methods. The
reason for observed differences in the performance of the programming languages relates
to the optimisation methods and initialised condition in the training procedure.

In this study, concerns associated with the generation of a 3D visualised subsurface
predictive DTB model were addressed using an automated intelligence training system in
C++ and Python computer programming environments. To enable more efficient
learning, network models composed of different internal characteristics were examined
to capture the optimum models. It was concluded that OK cannot be presumed to be a
representative model for the entirety of the studied area, while the developed intelligence
models provide significant, cost-effective and sufficiently accurate tools for subsurface
DTB geo-spatial prediction purposes.

Table 1. Results of statistical error criteria in evaluated model performance

Performance criteria Ranking of criteria
Model MAPE RMSE 1A MAD R? CR MAPE RMSE IA MAD R? CR Total Sort
domain order
rank
C++ 0.28 6.30 098 1.03 094 [-29.28] | 3 3 3 3 3 3 18 1
Python 0.4l 7.84 097 121 090 [-47.49] |2 2 2 2 2 1 11 2
OK 0.50 9.87 095 1.68 084 [-54,19] |1 1 1 1 1 2 7 3
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Figure 11. Comparing the predictability of predicted values using (A) C++, (B) Python,
(C) OK and the calculated residuals between measured and predicted DTB achieved
from (D) C++, (E) Python and (F) OK.
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4.2 Development of a novel ensemble automated A7 approach for uncertainty
analysis

This section presents a summary of Shahri et al. (2021b) in the development and proposal
of a novel ensemble-based AI approach using automated process for uncertainty
quantification (UQ). The UQ is an important benchmark to assess the 4/-based model
performance (Elam & Rearden, 2017; Shan et al., 2021, MLRA). However, currently used
methods are not only limited in terms of computational resources, they also require
changes to topology and optimisation processes, as well as multiple performances to
monitor instabilities in the model (Borgonovo, 2006; Farrance & Frenkel, 2012). This
implies that due to noise generated in the process, the results are affected in each random
dropping, and thus from a mathematical standpoint, the performance and predictability of
the A1 structure should always be evaluated with the original optimum model. As a result,
a novel state-of-the-art ensemble automated random deactivating connective weights
approach (ARDCW) was proposed (Figure 12) and programmed in C++ (Shahri et al.,
2021b). This automated approach is solely focused on randomly switched off weights in
optimum topology, not neurons, where the remaining weights are forced to participate in
learning processes and assist in decreasing overfitting and avoid being trapped in local
minima. Therefore, ARDCW does not require any changes in the optimisation process and
can directly be applied to already trained models in a way that outperforms other models.
Accordingly, training of multiple different topologies is avoided, and the UQ will be
estimated by deactivating the internal connective weights of a fixed optimum model. The
retraining procedure of an optimum topology in ARDCW provides greater accuracy,
because the predictions vary across multiple runs in which the produced predictions can
be interpreted in terms of average errors. In the present study, the number of sampled
weights was set within the interval of 1% to 50% of total weights. However, the selection
of this rate for dropout is flexible and user defined, where the greater the number of
deactivations, the more ensembles are examined, and thus the more analysis time is
required. The proposed ARDCW is then experimentally applied on geo-locations of 244
sets of compiled ground water tables (see section 2.1) between 19-25 September 2020 in
an urbanised area of Stockholm (Figure 13b).
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Figure 12. Block diagram of the proposed ARDCW approach for UQ modelling

Table 2 reflects the comparison of the ARDCW with MCD and the QR. According to
ranked statistical metrics, i.e. the RMSE, R?, coefficient of efficiency (Ec), the index of
agreement (/4), the percentage of observed GWT bracketed by 95% confidence interval
(PZ?”), and the average relative interval length of the confidence interval (4RIL), the
ARDCW is shown to be superior to other methods. The closeness statistics of the ARDCW
and QR can be interpreted as similar properties of posterior distribution of predicted GWT
for these methods. The results reveal that the smaller differences between the observed

GWT and those predicted by ARDCW show a higher degree of safety in the prediction
process and vice versa.
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Table 2. Comparison and ranking the UQ models through statistical metrics

Performance criteria Ranking of criteria
Model
= 7]
= = 5 S
= = =
= = = s X 2 J|lm S 5 ox % 2o EZ
s 2 % =a . =z 2 VoS &= SE o8
o =38 = & = 85 5§ 4
< < = 8
ARDCW 097 251 0.99 0.97 10.66 3.52 0.95 3 3 3 3 1 2 3 18 1
OR 096 299 099 0.96 10.44 2.73 0.95 2 2 32 2 3 3 17 2
MCD 0.94 35 0.98 0.94 9.5 5.76 0.68 1 1 1 1 3 1 1 9 3

In addition, the calculated success rate from a 10-class confusion matrix showed that at
89% correct, the ARDCW provided a 22% and 14% improvement in the estimated UQ
than the MCD and OR, respectively. Statistically, a predictive model is stable and under
control if most of the predictions fall within the range of the confidence interval (CI).
This range refers to the long-term success rate of the method in capturing the predicted
output, where the wider the CJ, the greater the instability (Figure 13, upper). Comparing
the predicted Pl and CI can show how accurately a mathematical model describes the true
system in a real-life situation. This then can be converted to a map (Figure 13, lower) to
show much the predicted GWT value will fluctuate due to noise or variations in the data
and help to interpret the distribution of uncertainty from the lack of observed data or
sudden, big changes in the groundwater tables. This map can also help in the planning of
future data collection and determining where to drill more groundwater boreholes to
reduce high uncertainties in estimating the GWT.
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Figure 13. Comparative plots of the applied method in UQ analysis at a level of 95%
for CI and PI (upper) and estimated UQ, using applied GWT data (black dots) in the
study area (lower).
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Despite the difficulty in creating a 3D visual predictive spatial GWT (Tacher et al., 2006),
it can provide more utility in interpreting the subsurface characterisation. Figure 14 shows
the step-by-step creation of the 3D model of the study area depicting the retrieved outlines
of the uncertainties. For the estimated UQ, more comprehensive concepts on the spatial
GWT pattern can be realised to avoid the relevant risk of facing aquifers during
geoengineering projects.

This study showed that the proposed ARDCW is a highly competitive UQ analysis
method. It can be used as a standard computational and decision-making tool in civil
engineering projects and the construction industry. This cost-effective and sufficiently
accurate tool can reflect the potential risks associated with the distribution of spatial
aquifers, thus preventing water inrush or facing underground geo-structures. Due to the
ease of updating the ARDCW with new data, the flexibility of such models provides a
preferred tool for geo-engineers and decision makers in the observation and analysis of
geo-environmental engineering issues within a project. This implies that the presented
GWT model offers an indispensable tool for decision makers in urban development
projects, where substantial land surface processes can be encountered. However, the
inherent complexities and potential computational costs in A7 modelling still present an
ongoing challenge.

4.3  Analysis of spatial predicted DTB using Al-based models in geoengineering
applications

This section refers to the summary of the published paper by Shan et al. (2020), which
discusses spatial analysis of predicted DTB using an A/-based model and geostatistical
OK in geoengineering applications. Due to complex spatial patterns, associated
uncertainties and sparse data, delineating and mapping the DTB and overlaid deposits is
a vital and difficult task in geo-engineering applications. Modern computing techniques,
such as 4/-based models (4/M), are appropriate options to overcome the deficiencies of
previous methods. The objective of this study is to investigate the feasibility of AIM in
prediction of the 3D spatial distribution of subsurface bedrock surface in a large area in
Stockholm, Sweden. The predictive AIMs were developed using 1,968 processed soil-
rock soundings, consisting of geographical coordinates and ground surface elevation. The
aim of this study is to develop an optimum intelligent trained model using a finite set of
DTB data to generalise the predictive ability for unseen observations. The data was
randomised to 65%, 20% and 15% for training, testing and validation. The appropriate
internal characteristics of an optimum model were adjusted through an examination of
various training algorithms, activation functions and learning rates.

Comparisons of the aggregation of 4/ and OK are shown in Figure 15 A and B. The
differences between the measured and corresponding predicted D7B values are reflected
in Figure 15C (41) and D (OK). The histogram in Figure 15C shows that the number of
differences with values close to zero when using the A/ prediction model are more than
the amount of zero values when using the OK model.
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Figure 15. Comparison of the differences in (A) predicted values using 4/ and (B) OK.
Residuals between measured and predicted data (C) A/ and (D) OK.

In this study, the applicability of artificial intelligence modelling using an artificial neural
network to produce high resolution 3D geo-spatial bedrock surfaces was investigated.
The developed optimum predictive A/ model was then successfully applied on a road
construction project in an area of Stockholm, Sweden. The A7 model has shown that the
differences between output and measured data for projects with limited drilled borehole
data can be useful information for the planning of drilling locations. This issue becomes
especially important in a situation where existing boreholes are scattered and there is a
complex variation in the underlying D7B topography.

4.4 Uncertainty analysis of predicted spatial subsurface DTB using an optimum
Al model

As presented by Shan et al. (2021), the outcome of predictive geo-engineering models
includes uncertainties. Therefore, formal frameworks are needed for the UQ in order to
assess the reliability of the models and reduce hesitancy in both computations and real-
world applications. In prediction processes, uncertainty originates from three main
sources: modelling (describing the real system), numerical properties (mathematical
equations) and data measurements. Considering the effect of uncertainties in subsequent
forecasts, this study aims to address this challenge in a geo-engineering project using a
sufficiently accurate spatial subsurface bedrock model. The optimum predictive model
was captured through the design and development of an automated artificial neural
network (ANN) training scheme, which was subjected to 1,967 geotechnical soil-rock
soundings in Stockholm, Sweden. The evaluated UQ of the predicted bedrock levels
represented different ways of comparing the true and predicted value at the same point.
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Using UQ methods, the level of confidence for each measurement can be estimated. The
UQ then enables proper judgments on the quality of the experiments and thus facilitates
meaningful comparisons with other similar values or a theoretical prediction (Iman &
Helton, 1988). Statistically, a process is in control if most of its variation falls within a
certain range. The confidence interval (C/) is a computed range of observed data that
covers the true future populations of a predictive model with a certain probability. It can
also show the stability of the estimates, where the wider the CI, the more instable the
estimate. The level of 95% means that 5% of the predicted value lies outside the CI. The
prediction interval (P/) shows the certain probability of an estimation of a future
observation and is often used in regression analysis. Accordingly, a 95% prediction
interval (PI) shows the certain probability of an estimation of a future observation and is
often used in regression analysis.

In Figure 16, the calculated error margins of CI and P/ for training and validation datasets
imply that most of the predictions fall within these limits. The point(s) outside the limits
indicate the presence of non-random variation, which makes the process statistically
unstable (Deng et al., 2012). To estimate the total uncertainty of a measurement, the UQ
is formally performed through statistical metrics. The results of the developed optimum
neural network model and the employed metrics for UQ showed the importance of the
standard deviation (o) of each experiment for both the measured and predicted values,
where the lower the o, the lower the uncertainty. This implies more confidence and thus
higher reliability in the experiments. According to calculations, the values of + 2.8 m and
+12 m were considered as the uncertainty and error bias, respectively for CI and P/ in the
measured data.
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Figure 16. Estimated CI and P/ for validation (A) and testing (B) dataset.
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4.5 Visualisering av bergtopografi med A7

Spatial distribution modelling of the depth to bedrock (DTB) is an important and
challenging concern in many geo-engineering applications. Due to associating of DTB
with the safety and economy of design structures, therefore, generating more precise
predictive models can be of vital interest. Using JB soundings data for an area in
Stockholm, an optimum visualized 3D predictive DTB model was created via an
automated intelligent computing approach and compared with the ordinary Kriging (OK)
geostatistical tool.

The study area encompasses a 5 km stretch of 20 km ongoing NW-SE direction highway
project (Tvéarforbindelsen) in Stockholm, Sweden. This highway crosses the existing
bedrock consisting mainly of sedimentary gneiss and metavolcanic rocks as well as
pegmatite passages. In this study, 1968 JB soundings (Figure 17) were compiled in the
area and randomized into 65%, 20% and 15% to generate the training, testing and
validation datasets.
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Figure 17. Measured DTB using JB soundings (black points) superimposed on the
DEM of the study area and satellite image from Google earth.
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Table 3. Summary of the differences between measured and predicted values for OK

and Al
Metod Average Improvement from
difference/point (m) OK (%)
OK 7.4 0
Al 43 42%

To obtain the optimum model, an automated learning process through an iterative
procedure was developed. This approach using several embedded internal nested loops
can automatically monitor a wide variety of hyperparameters for both shallow and deep
neural networks. The result of automated procedure using different combination of
hyperparameters showed the minimum error in a four layers model with 3-28-12-1
topology (Figure 18). In this optimum topology, 3 shows the number of inputs variables
(spatial coordinates of JB soundings), 28 and 12 denote the number of neurons in two
hidden layers, while 1 expresses the number of output (the predicted DBT).

The comparison between Al and ordinary kriging (OK) showed more true estimations in
Al and thus higher predictability than OK. Table 3 shows the summary of differences
between measured and predicted values for OK and Al The average difference/point for
OK is 7,4 m and 4,3 m for Al, which indicates that the predicted DBT is closer to the true
bedrock level for Al modeling. It also shows that Al has 42% improvement than OK by
looking at the differences between measured and predicted values.

Due to the variation of bedrock topography, producing a more accurate 3D spatial
predictive DTB model is of great importance to reflect the potential subsurface risks
associated with geo-engineering projects. This demand in the current study was addressed
using an automated Al system that showed improvement rather than traditional OK
technique. Al has the potential to bring significant economic changes to industry as it can
handle big data, present more accurate results and also is able be updated in real-time.
Such characteristics provide a cost-effective tool for geo-engineers in subsurface DTB
geo-spatial prediction purposes. The results also showed that the OK cannot be presumed
to be the best DTB model for the entirety of the studied area. Practically, the presented
3D predictive DTB model can present the boundary between the overlaid sediments from
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the hard rocks. This issue can play a significant role in the design of shallow foundations,
piling for the city of Stockholm, which has many ongoing projects in underground
openings and transport tunnels.

4.6 3D modelling and uncertainty analysis of DTB using hybrid automated deep
learning

The interest in creating high-resolution 3D subsurface geo-models for emergency use
through multisource data retrieved, for example, from boreholes, through geophysical
techniques, geological maps and rock properties is increasing and should be able to be
updated at a later stage (Zhang et al., 2020). Therefore, the ability to accurately and
meaningfully obtain an interpretable perspective from integrated heterogeneous nonlinear
data requires the development of new methodology for convenient post-modelling
analysis with a superior level of detail tied with geospatial information (Lee & Zlatanova,
2007). Accordingly, when large amounts of geo data are produced, the characteristics of
subsurface 2D spatial patterns need to be developed in 3D, where the more information
there is, the more accurate the inference result will be (Giinther, 2003). However, difficult
obstacles arise due to the difficulty in managing large amounts of geo data and improper
interpretations of laterally distribution in the geological model (Mayoraz et al., 1992). To
manage the difficulties presented by big data, the application of skilled A/7 in terms of
shallow and deep neural learning networks (SNLNs and DNLNs), machine learning (ML),
hybrid models and evolutionary algorithms have emerged as powerful tools across all
geoengineering problems (e.g. Karpatne et al., 2018; Shahri et al., 2021a). Due to features,
such as the ability to create transferable solutions and learnability from high-level data
attributes, DNLNs are some of the most widely used systems for modelling and can create
high resolution 3D geo models.

From a geoengineering point of view, depth to bedrock (DTB), corresponding to the
thickness of the sediments above the bedrock, is a crucial factor for the proper subsurface
utilisation. Due to Sweden’s adherence to EU rules and the abundance of established
infrastructure (e.g. transport tunnels, roads, railways), DTB is an important concern,
where geotechnical knowledge can provide critical insights into the influence of the
stability of the structures and transport of contaminants through gradient on bedrock
surfaces (Shahri et al., 2021a). Therefore, the production of an accurate 3D visualised
spatial DTB model not only facilitates the interpretation of sparse geotechnical
measurements but also provides a valuable tool for the identification of optimum
solutions and risk assessment (Gomes et al., 2016; Shan et al., 2021 MLRA). However,
due to built-in uncertainties with geotechnical-based limitations, producing a high
resolution 3D spatial DTB predictive model in geoengineering projects not only requires
a different combination of data types, it is a critical task (Shahri et al., 2020, 2021a).
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Figure 19. Location of study area and the location of acquired data datasets.

In this study, geolocation of 644 datasets of different soil-rock soundings and geophysical
investigations from Vargarda-Bilinge in Sweden (Figure 19) were used in a hybrid
automated DNLN procedure to generate a 3D spatial prediction of DTB (Figure 20, Block
A) and UQ (Figure 20, Block B) (Shahri et al., 2021b). The UQ is addressed using the
proposed, state-of-the-art novel ARDCW approach (Shahri et al., 2021b), which was
implemented only on the stored weight database. The integrated system automatically
monitors a wide variety of combined internal hyperparameters, leading to faster learning
and minimising the risk of getting stuck in local minima or overfitting problems (Shahri
et al,, 2020). To prevent early convergence, a two-step termination criterion was
considered: if the root mean square error (RMSE) as the priority is not achieved, then the
number of iterations (set to 1000) is used (Figure 20, Block A). To evaluate the UQ, the
optimum captured model is automatically retrained using switched off weight
components to monitor the variation of the predicted output and subjected to different
scenarios (Figure 20, Block B). This overcomes the challenges of computational costs for
multiple training of complex topologies through different optimisers (Shahri et al.,
2021b).
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Figure 21a shows a series of results subjected to the implemented hyperparameters (Table
4) in terms of the variation of minimum RMSE for the training stage. Using this process,
the risk of overfitting, early convergence and getting stuck in local minima will be
minimised; the DNLN topology with a structure of 3-20-15-1 is subjected to ON, and Hy?
can be selected as optimal. The subsequent predictability of the topology achieved using
the randomised datasets is reflected in Figure 21(b-d).
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Table 4. Hyperparameters used to monitor the optimum model

Training algorithm  Activation function =~ Maximum number of Maximum number of
(TA) (4AF) hidden layers (user used neurons (user
defined) defined)
OP, CGD, AM, ON, Sig, HyT, Lin, Relu, 3 35
LM, SGD SS

n: 0.7 with a step size domain within [0.001,1.000] interval

Note=>» QP: Quick propagation; CGD: Conjugate gradient descent; AM: Adaptive momentum; LM:
Levenberg-Marqurdt; @QNV: Quasi Newton; SGD: Stochastic gradient descent; Sig: Sigmoid; Hyt:
Hyperbolic tangent; Lin: Linear; Relu: Rectified linear unit; SiS: Softsign
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Figure 21. Identification of the optimum topology for prediction of D7B through
variation of RMSE (A) and corresponding predictability using training (B), testing (C),
and validation data (D) (7R: training data; TE: testing data; VL: validation data; MAPE:

mean absolute percentage error).

Figure 22 shows the results of the UQ analysis in terms of the predicted error when the
ARDCW (Shahri et al., 2021b) is used to achieve the optimum topology, where higher
errors in predicted DTB result in greater uncertainties at data points. Figure 22 shows the
predicted 3D subsurface spatial distribution model of the study area compared with the
true scanned DTB data. The rock outcrops can then be identified through the generated
overlaid ground surface and spatial scanned DTB, leading to a 3D subsurface model with
high resolution and acceptable predictive accuracy in geo-engineering projects. Figure
22b shows the contour map of the residual between the scanned and predicted D7B.
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Figure 22. The created 3D model of the study area, comprising the overlaid ground
surface with the lateral distribution of scanned and predicted D7B (a) and contour map
of the residual between the scanned and predicted DTB using an automating system (b).

Table 5 presents a comparison of QR, OK and DNLN as subjected to data from 75,715
scanned rock surfaces to generate 3D models using general standard deviation (GSD),
coefficient of determination (R?), RMSE and difference ratio (DR). Accordingly, a model
with a lower DR, GSD, and RMSE and higher R’ indicates better performance.

Table 5. Model evaluation using statistical error criteria

Criteria Optimum OR OK
DNLN
RMSE 1.033 1.19 1.45
GSD 0.0096 0.011 0.0134
DR 0.996 1.003 1.010
R? 0.91 0.88 0.82

Precision (PR) shows how closely individual measurements agree with each other and
can be found using the normalised standard deviation (c) on the magnitude of the results:

o
PR =—x 100
0,
Where; 0; shows the mean of test results of applied models for scanned DTB; thus, the
lower the PR, the more precise the outputs. The results of PR using data from 75,715
scanned rock surfaces for the QR, OK and optimum DNLN are 0.031, 0.039 and 0.029,

respectively. In addition to the validation datasets, Figure 23 shows the predictability of
OR and OK and the optimum DNLN in creating the 3D model using scanned data,
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subjected to 75,715 scanned DTB in the study area.

3D digital models provide more information compared to traditional methods, as they can
help improve communication between engineers, contractors and their clients. Such 3D
predictive geospatial models can show digitised geometric or topological objects based
on the available factors, thus capturing the complexities of buildings and infrastructures
that closely resemble the view of the finished project. 3D digital DNLN models can play
a significant role when a project needs to undergo bidding and cost evaluations and all
necessary resources need to be listed. This implies that due to the ability to capture the
complexities of subsurface characteristics, improve visualisation, and facilitate the
analysis of designs, 3D modelling is an important tool for the success of a geoengineering
project. The results presented here show that 3D models that use DNLN can improve the
visualisation capacity of geoengineers so that they can better analyse crucial structural
elements in the design stages. This digital but flexible model allows geoengineers to add
the coordinates of the infrastructure to modify inconsistencies in the plan. This will
provide them with the opportunity to find a more applicable solution to address
difficulties as they encounter them. The use of 3D models also enhances the tendering
process and allows contractors to benefit from automated intelligent modelling, which
yields higher quality construction at a lower cost. Furthermore, 3D models can more
easily convey the use and advantages of a designed project, especially to those who have
little knowledge of construction and engineering. Accordingly, by using 3D models,
geoengineers can determine how to design a project based on natural and man-made
aspects, which leads to the adoption of more appropriate structural elements and thus
results in safer, more durable projects.
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5. CONCLUSION

In this study, deep learning is used to map spatial DTB and GWT and to estimate UQ from
data measured in the field. For DTB modelling, different types of geo-data, including soil-
rock soundings, geophysical measurements and observed bedrock outcrops, were used.
In the case of spatial modeling of GWT, the monitored groundwater tables from borehole
measurements were employed. Since the GWT observation is continuous, a certain time
interval (two weeks) is chosen that assumes no variation in the groundwater tables. To
handle such inhomogeneous data, an automated 4/-based model was developed for both
prediction and UQ estimation through a deep learning technique. The proposed approach
was then applied to model, analyse and produce the 3D spatial distribution of the
compiled DTB and GWT data in Stockholm, Sweden to evaluate the uncertainty of the
model; a state-of-the-art ensemble automated random deactivating connective weight
approach (ARDCW) was proposed and developed. The proposed ARDCW was applied on
GWT data, and the results were compared with MCD and QR techniques. According to
the achieved ranking procedure, which was based on the applied statistical metrics, the
proposed ARDCW (see 6.2) showed the highest scores and proved to be the best method
for UQ analysis for this dataset. This approach is able to build time-dependent GWT
models by simply selecting data from different time intervals. The comparison between
Al deep learning and OK on DTB modelling (see summaries 6.1, 6.3, 6.5 and 6.6) shows
that deep learning A/ can generate a surface that is closer to the true surface. The UQ that
used deep learning also shows superior performance, better estimation of uncertainties
and covers more true values than the quantified uncertainty with OK (see summaries 6.4
and 6.6).

The achieved outcomes and interpreted results indicate that the developed A7 models are
feasible, cost-effective, economic and sufficiently accurate to be applied for geospatial
DTB and GWT surface predictions. The automated deep learning modelling approach can
provide more reliable 3D models that can help geoengineers gain better insights into
crucial structural elements in the design stages (see summary 6.6). From an economic
point of view, the generated high resolution 3D models can allow contractors to benefit
from automated A/ in the bidding process and thus lower construction costs. Furthermore,
the generated 3D A/-based models can more easily support and explain the project design,
especially to those who have little knowledge of construction and engineering.

The result of this project was also implemented/integrated with a GeoBIM system to
create an automated process for 3D bedrock surface modelling. The users of GeoBIM
perform their own 3D bedrock surface modelling. This can assist all geotechnicians, rock
engineers and engineering geologists who use bedrock surface models for decision
making and project planning.
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Due to associated uncertainties, modelling the spatial distribution of depth to bedrock (DTB) is an
important and challenging concern in many geo-engineering applications. The association between DTB,
the safety and economy of design structures implies that generating more precise predictive models can
be of vital interest. In the present study, the challenge of applying an optimally predictive three-
dimensional (3D) spatial DTB model for an area in Stockholm, Sweden was addressed using an auto-
mated intelligent computing design procedure. The process was developed and programmed in both
C++ and Python to track their performance in specified tasks and also to cover a wide variety of different
internal characteristics and libraries. In comparison to the ordinary Kriging (OK) geostatistical tool, the
superiority of the developed automated intelligence system was demonstrated through the analysis of
confusion matrices and the ranked accuracies of different statistical errors, The results showed that in the
absence of measured data, the intelligence models as a flexible and efficient alternative approach can
account for associated uncertainties, thus creating more accurate spatial 3D models and providing an
appropriate prediction at any point in the subsurface of the study area.
2021 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

In many countries, including Sweden, subsurface modelling is

bedrock, is of great interest in subsurface geo-engineering model-
ling and risk assessment (Sundell et al., 2015; Gomes et al., 2016;
Wei et al., 2016; Ghaderi et al., 2019; Yan et al., 2020). Accordingly,

increasingly becoming a necessary part of three-dimensional (3D)
urban planning. To create an informative and useful subsurface
model, different data types need to be combined. Because of the
dynamic nature of the subsurface and variation of implemented
data density during the planning process, subsurface modelling
techniques are not easily interoperable. Moreover, planners and
construction experts are primarily looking for knowledge on the
location of geological discontinuities, such as the surface of crys-
talline bedrock and the boundaries of soft sediments, as well as
their geo-engineering properties. Therefore, depth to bedrock
(DTB), measured as the thickness of the sediments above the
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E-mail addresses: shahri@kth.se, shahri.abbas@bircham.edu (A. Abbaszadeh
Shahri).
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1674-7755 © 2021 Institute of Rock and Soil Mechani
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the information on the spatial distribution of DTB is an important
issue in both the design and construction phases. This is a concern
in European countries due to the vast variety of geological condi-
tions and the need to find a solution to various challenges associ-
ated with the urbanisation of densely populated cities, while
meeting environmental regulations (Athanasopoulou et al., 2019).
Therefore, visualised DTB models that include the interpretation of
sparse geotechnical measurements are important tools for identi-
fying solutions. Despite the presented essential knowledge on field
development (e.g. Glasgow, Stockholm, Helsinki, and Oslo), for the
cities on thick sequences such as Rotterdam and Vienna, the digi-
tisation of DTB is not an issue (Schokker et al., 2017; Abbaszadeh
Shahri et al., 2020). However, because of the associated un-
certainties (Baecher, 1986), producing highly accurate DTB predic-
tive models is a critical task that can have significant effects on the
costs and risks of geo-engineering projects (Clarke et al., 2009; Mey
et al., 2015).

. Chinese Academy of Sciences. Production and hosting by Elsevier BV. This is an open access article under the CC BY-
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The characterisation of DTB profiles is commonly interpreted
through the sufficient sparse numbers of geotechnical soundings in
and around a desired area. However, geotechnical investigations
may suffer from certain limitations, for example, limited access to
an entire area, costs of investigations and distance between the
soundings. Consequently, with the increment of distance between
two soundings, the uncertainty will increase abruptly, as many
points are needed to estimate or remain totally unknown. To
generate a continuous predictive DTB model, geophysical tech-
niques (Abbott and Louie, 2000; Dowd and Pardo-Iguzquiza, 2005;
Christensen et al., 2015; Nath et al., 2018), random fields (Uzielli
et al, 2005; Li et al, 2015), geostatistical tools (Samui and
Sitharam, 2011; Viswanathan et al, 2014; Kittered, 2017), and
variogram-based methods (Maus, 1999; MacCormack et al., 2018)
as well as geomorphological-based models (Del Soldato et al., 2018)
have been actively employed. In these methods, results from
geotechnical soundings are interpolated to estimate the DTB in
between the soundings that capitalises on the spatial structure and
semivariance of the measured data (Goovaerts, 1997). Moreover,
planar mesh generation, spatial interpolation and surface inter-
section are other generic widely used techniques in geological
modelling (Mei, 2014). In addition to the abovementioned tech-
niques, the falling weight deflectometer (Roesset et al., 1995),
extracted attributes from satellite images (Kuriakose et al., 2009;
Sun and Kim, 2017; Yan et al., 2020), topographic data (Gomes et al.,,
2016), and signal analyses (Lane et al., 2008; Setiawan et al., 2018;
Du et al., 2019) have been highlighted as effective models.

In site investigation, the geophysical techniques can provide
supplementary information on sparse observations (e.g. borings,
test pits and outcrops). However, these techniques are limited to
small-scaled surveys in ground-based techniques (Erkan, 2008).
Moreover, geophysical data need to be correlated with information
from direct geotechnical methods, as data are generally interpreted
qualitatively, and useful results can only be obtained by experts
familiar with the particular testing method (Pazzi et al, 2019;
Christensen et al, 2015). Compared to geotechnical soundings,
these testing methods can be complex and time-consuming
because of the need for specialised equipment and experienced
operators as well as logistical issues (Clayton and Smith, 2013).

Geostatistical tools are one of the most used interpolation
technologies for DTB maps (Abbaszadeh Shahri et al., 2020). By
enhancing the spatial distribution of data, these techniques offer
convenient options for management and provide continuity that
can reproduce the trend of DTB. This feature allows the user to be
precise in interpretation; however, the success of a produced DTB
map depends on the quality of available information on the study
area and independent variables (Deutsch, 1996). Systematic sam-
pling uses a fixed grid to assign values in a regular pattern. Cell
change cannot be accounted for in this method, and interpolation
thus estimates the centre of each unmeasured grid cell (Baskan
et al, 2009). This limitation implies that the location of points
may be problematic when using random sampling distribution, and
the coverage of adjacent areas may not be supported. Therefore,
spatial reconstruction of a given finite number of observations at
different locations implies that measurements have been taken
under measurement noise (Stein, 1999).

Random field theory is a mathematical definition using the
Euler characteristic for smooth statistical maps that address the
threshold problems in functional imaging (Brett et al., 2004), If
datasets are limited in size, this method is not an appropriate
alternative due to a complex training stage and computational
potency (Fenton, 1999).

In recent years, artificial intelligence (Al) techniques have
shown remarkable computational and learning capabilities in
addressing geotechnical problems. As DTB modelling deals with

various uncertainties (Gomes et al, 2017; Hood et al, 2019;
Abbaszadeh Shahri et al., 2020), the subcategories of Al techniques
are appropriate alternatives to overcome the limitation and sim-
plifications of the illustrated methods (e.g. Chang and Chao, 2009;
Hengl et al., 2017; Abbaszadeh Shahri et al., 2020). Furthermore,
hybridising the Al techniques with metaheuristic algorithms can
significantly optimise the model performance (Asheghi et al., 2019;
Abbaszadeh Shahri et al., 2021). Different methods applied in DTB
modelling are summarised in Table 1.

As illustrated, depending on the interpolation algorithm
applied, different results can be observed in the produced geolog-
ical DTB models. Therefore, it is not always clear which method can
provide the most appropriate outcome. Accordingly, the resolution
of complex 3D geological models can be increased and supple-
mented by ensuring accurate geospatial distribution of DTB. This
study was motivated by the need to address such a challenge in a
geo-engineering project in Stockholm, Sweden, where producing
an adequately accurate quantitative model is of great interest. To
find the optimum predictive DTB models, an automated Al training
scheme was designed and developed, and then programmed using
Python and C++. This allowed many different internal character-
istics and optimiser to be tested in Python and C++. The proposed
procedure was applied on 1968 datasets from soil—rock soundings
in an urbanised area in Stockholm. Due to the use of automated
programmes, the identified optimum models showed superior
performance and more accurate spatial DTB compared to conven-
tional ordinary Kriging (OK) technique. The results have an impact
on the ability to reduce the number of boreholes and corresponding
costs when using developed models.

2. Study area and data source

The study area encompasses a 20 km stretch of an ongoing
highway project in Stockholm, Sweden. This area consists mainly of
fine-to coarse-grained gneiss of sedimentary origin and medium-
to coarse-grained metavolcanic rocks as well as occasional
coarse-grained pegmatite passages. Sedimentary gneisses gener-
ally dominate in the area. According to the bedrock map provided
by the Geological Survey of Sweden (SGU), the faults in the area
include one with a SE-NW direction that is the result of structural

Table 1

A summary of applied techniques to predict the DTB.
Source Used method Study area
Chang and Chao (2009) FWD, PNN Texas, USA

Abbaszadeh Shahri
et al. (2020)

Hengl et al. (2017)

Hood et al, (2019)

ANN, RBF, GFFN, SVR Stockholm, Sweden

Worldwide data
Kerkasha, Eritrea

GBT, RF, ANN
RF, RS, airborne geaphysics

Mey et al. (2015) ANN Rhone Valley-Alp,
Switzerland

Yan et al. (2020) RS, RF, GBT China

Clarke et al. (2009)  ANN Glacial and fluvial
valleys

Viswanathan and GPR, least squares SVM,
Samui (2016) ELM

Sitharam et al. (2008) Geostatistic, ANN, SVM Bangalore, India

De Carneiro et al. Self-organising ANN, airborne Brazilian Amazon
(2012) geophysics

Pfaffhuber et al. (2019) Geophysics, ANN

Del Soldato et al. (2018) GIST

Chennai, India

Norway
Mountain ranges, Italy

Note: ANN — Artificial neural network; SVM — Support vector machine; RBF —
Radial basis function; SVR — Support vector regression; RF — Random forest; RS —
Remote sensing; FWD — Falling weight deflectometer; PNN — Polynomial neural
networks: GPR — Gussian process regression; ELM — Extreme learning machine;
GBT — Gradient boosting tree; GFFN — Generalised feedforward neural network;
GIST — Geomorphological index soil thickness.
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deformation zone. The widths are decreased from 75—100 m in
larger faults to 50 m in smaller faults, The plan for this highway in
the NW-SE direction crosses the existing bedrock, where the road
will be built as concrete tunnels in some sections. Among the
executed geotechnical tests and acquired data, 1968 soil—rock
soundings were compiled in the area (Fig. 1a). These soundings
encompass a varied and complex set of data derived from subsur-
face explorations and in situ instrumentation. However, a lack of
data needed to provide a consistent database is an ongoing chal-
lenge not only in this study but also in most geo-engineering ap-
plications. This limitation in the ability to improve the datasets was
overcome by using a random data creator (RDC) (Abbaszadeh
Shahri et al, 2020), an intelligent knowledge-based framework
used to generate appropriate pseudo observations that can be used
to compare, interpret, and describe the results. Accordingly, 62 new
pseudo datasets were generated for the area (Fig. 1a, points with
black +) to extend the region of influence for each soil—rock
sounding and decrease the degree of variability in the extrapola-
tion direction. These retrieved sparse data, which have been
distributed alongside the planned road, can be used to supplement
the collected DTB information from geotechnical soil—rock
soundings, as this is the most common probing method used in
Sweden that can be performed in both soil and rock. This method
can provide good and accurate soil and rock interfaces, but there is
uncertainty in the interpretation of bedrock levels when the top of
the bedrock is cracked and brittle. The thickness of overlaid post-
glacial sediments varies from 0 to more than 100 m. An overview of
the constructed digital elevation model (DEM) and geological
setting of the area is shown in Fig. 1b and c, respectively.
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Fig. 2. Simple configuration of multilayered ANN structure.

3. Artificial neural network processing paradigm

ANNSs, as connectionist computing systems of processing ele-
ments, are configured for specific applications through a learning
process that aims to mimic and replicate the operation of the hu-
man brain. Recent developments in system analyses and the sig-
nificant proven advantages over traditional modelling approaches
have led to extensive use of ANN techniques. Properly tuned ANNs
improve the diagnostic performance and modifications and thus
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Fig. 1. Colour plot of the DTB measured through soil—rock soundings with the generated RDC data (black +) (a), the overview of overlaid DEM of study area and satellite map taken

from Google earth (b), and the geological map of the study area from SGU (c).
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are easily adapted to incorporate new data. The goal is to fit outputs
with a linear function of nonlinear transformed inputs where any
gradient optimisation method may be used.

As presented in Fig. 2, the received signal from the ith input (x;)
is associated with weights connected to the jth neuron (w;) and is
passed through one or more hidden layers to be processed. The
output of the jth neuron of the kth hidden layer in the tth iteration
(ojf‘(t)), using activation function (f), is confined into a pre-defined
range and then transferred as

i=1

n-1
v,*(t):f(ZW,%xi‘"aHt{i‘) G<ny M

where ny is the number of neurons in the kth layer, and bj‘ denotes
the bias which shifts the summed signals received from the neuron,

The error of neuron j at the tth iteration, eft), and the corre-
sponding error signal of the ith neuron in the kth hidden layers
ﬂf(tj. as well as the total error for the entire network, E(t), are then
expressed by

g(t) = dj(t) — of(t) (2)
PHG) 7f(xf(t)>2p}‘*'(r)wl"l”(rf 1) k=12..m-1)
7

(3)

B =13 @

where dj(t) denotes the desired output of neuron j at the tth iter-
ation, and f(xf‘(r)) is the first derivative off(xf‘(t)) with respect to
k
xE(e).
Accordingly, the weights and biases are updated to minimise the
prediction error, £(t), as

AWE(E) = m,pF(0)0F 7 (0) + apAwfi(c — 1) (5)
AbF(€) = nypf(t) + e, ADK(E—1) (6)
£(t) =y - ¥(6) (7)

where y is the actual output; ay, and «;, are the momentum con-
stants that determine the influence of the past parameter changes
on the current direction of movement in the parameter space, and
aw usually varies within [0.1, 1] interval and is used to avoid
instability in the updating procedure; 7,, and 7, represent the
learning rates; and p}‘(t) is the error signal of the ith neuron in the
kth layer, which is back-propagated in the network.
The outcome of the Ith neuron in the mth output layer (¥,) is
then calculated using the updated weight by
1
Jie) = Y wikl i) (I<no) (8)
i=1

where ng is the number of neurons in the output layer.

3.1. Developing optimum DTB predictive models

Advanced ANN techniques can be considered robust tools for
DTB modelling. However, referring to dependency on the defined
problem and a lack of a standardised method for configuration, the

identification of an optimum model is a difficult and critical task
(e.g. Vogl et al,, 1988; Currry and Morgan, 2006; Krasnopolsky et al.,
2018; Ghaderi et al., 2019; Abbaszadeh Shahri et al., 2021). During
the training procedure, the model should not be trapped in local
minima nor overfit. To overcome these problems, the regularisation
and tuning of internal characteristics (e.g. training algorithm,
number and arrangement of neurons, learning rate, activation
function and architecture) play a significant rule (Abbaszadeh
Shahri, 2016). Using different combinations of these parameters
makes learning faster and prevents convergence in local minima
(Abbaszadeh Shahri et al., 2021). Overfitting occurs when a model
fits the data in the training set, while incurring a larger general-
isation error (Tetko et al., 1995). Regularisation refers to the process
of modifying a learning algorithm to prevent overfitting by fixing
the number of parameters in the model (Cirosi et al., 1995). Early
stopping is used as a form of regularisation to control the number of
iterations that can be run before the training algorithm begins to
overfit. Therefore, in each iteration, early stopping improves the
performance of the learning algorithm on data outside of the
training set (Zhang and Yu, 2005; Yuan et al., 2007).

To find the optimum models, the presented method by
Abbaszadeh Shahri et al. (2020) was updated using an automated
identification process (Fig. 3). Using an iterative procedure, this
process was then integrated with a constructive technique and
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Fig. 3. The block diagram used to assess the optimum model. NHL — Number of hidden
layers; HN — Hidden neurons; n — Number of used activation functions; m — Number
of used training algorithms,
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programmed with both Python and C++. This was done not only to
capture the capabilities of both programming languages but also to
increase the power of the models and avoid the problems of
overfitting and getting stuck in local minima. A programming
language is a specification, and the success of an application will
therefore depend on making an appropriate choice. Python and
C++ were selected due to their popularity, history, and access to
libraries. Moreover, these programming languages are turing-
complete (by design) from a theoretical standpoint, with quite
similar semantics, even if their syntax is very different. Therefore,
based on each programmed code, a wide variety of internal char-
acteristics for both shallow and deep neural networks have been
examined (Table 2). Deep neural network refers to models with
multiple hidden layers that can be reused to compute the features
of a combined structure with fewer weights (LeCun et al,, 2015).
This implies that after learning, deep structures can improve the
generalisation to new examples (Kriegeskorte and Golan, 2019).
However, the need for adequate computing power and data for
learning are the main potential limitations of deep structures
(Bengio, 2009).

Fig. 3 shows the block diagram of the proposed method that can
automatically capture the optimum models using the characteris-
tics in Table 2. To constrain the search space and save time, the
learning rate was set to 0.7 with a step size domain within [0.001,
1]. Using three embedded switch cases in the programmes, the
codes were automated to monitor all characterised training algo-
rithms (TA) and activation functions (AF). The maximum numbers
of hidden layers and neurons as user-defined parameters were set
to 2 and 40, respectively. Therefore, the training strategy is followed
by loops and switch cases, where the system starts with one hidden
layer and checks the topology of 3-40-1 for all internal character-
istics (Table 2). When the system switches to two hidden layers, the
procedure automatically starts with 3-1-39-1 structure using the
first TA and AF and is pursued to topology 3-39-1-1. Afterwards, it
returns with the same TA, and the AF will switch to next case. This
iterative process is repeated for all TAs, which are switched step by
step to a variety of internal characteristics. Applying different step
sizes for the learning rate in TAs, ie. replacing the conjugate
gradient descent (CGD) with adaptive momentum (AM) in step size
of 0.001, allows the model to avoid the overfitting problem and
maximises the chances of avoiding local minima (Abbaszadeh
Shahri et al, 2020). A two-step termination criterion, including
the root mean square error (RMSE) and number of iterations (set to
1000), was considered. Accordingly, the minimum RMSE and the
maximum network coefficient of determination (R*) were stored
and ranked for all trained structures in three runs,

Table 2
Applied internal characteristics to capture the optimum models.

Programming Training  Activation Maximum number ~Maximum

language algorithm function  of hidden layers  number of used
(TA) (AF) (user-defined) neurons (user-
defined)
[ QP.CGD,  Sig. HyT, 3 40
AM,QN,  Lin, Relu,
LM, SGD  S§
Python AM, Sig. HyT, 3 40
Nadam,  Lin, PRelu
SGD,
RMSProp

Note: QP — Quick propagation; CGD — Conjugate gradient descent; AM — Adaptive
momentum; LM — Levenberg-Marqurdt; QN — Quasi Newton; SGD — Stochastic
gradient descent; Sig — Sigmoid; Hyt — Hyperbolic tangent; Lin — Linear; Relu —
Rectified linear unit; PRelu — Parametric rectified linear unit; SS — Softsign; Nadam
— Nesterov-accelerated adaptive moment estimation; RMSProp — Root mean
square propagation.

Due to differences in terms of syntax, simplicity, use and overall
approach to programming, there is considerable debate over the
performance of Python and C++ in specified tasks. As shown in
Table 3 and the programmed procedure in Fig. 3, a distribution of
40 neurons in two hidden layers provides 78 different topologies.
Therefore, considering the combination of employed AFs between
layers, in each round of training, the automated system monitors
approximately 2000 topologies with different internal character-
istics. This implies that the optimum models are screened among
numerous examined structures, even those with similar topologies
but different internal characteristics. Accordingly, the variation of
network RMSE using 40 neurons in different topologies, starting
from 3-1-39-1 to 3-39-1-1, is reflected in Fig. 4. Summarised results
(Table 3) show that the 3-28-12-1 and 3-25-15-1 topologies can be
selected as optimal topologies. The differences in performance
between these languages were expected, as distinctions are raised
in terms of syntax, simplicity, use, and the overall approach to
programming. This can technically be interpreted as the threading
build of each employed language and procedure requirements to
become machine code.

3.2. Outcomes of generated DTB models

The outcome and progression of predictive modelling are
determined by the effectiveness of systemic feedback loops
through structural changes that control whether individual
models serve the required needs. Referring to Table 3, the pre-
dictability of the captured optimum models using tuned charac-
teristics for both C++ and Python codes was plotted and
presented. Fig. 5 shows the comparison between the fitness
(Fig. 5a and b) and corresponding differences (Fig. 5¢c and d) for
measured and predicted DTBs using training and testing datasets.
According to the no free lunch theorem (Wolpert and Macready,
1997), biases are a fundamental property of the results gener-
ated in inductive learning systems, and the assumption of an
intelligent model free of biases is not reasonable. In the search
space, the achieved possible minimum cost function (RMSE) in-
troduces the bias of predictions. Considering the designed pro-
cedure and examined different internal characteristics (Fig. 3), the
reason for the observed biases can be referred to the implemented
TAs and thus the trade-offs between accuracy, overfitting and
overgeneralisation of each choice associated with the corre-
sponding RMSE. Moreover, as the last layer only receives results
generated in the previous layer, the detected biases state the
differences in the mapping of fed data between the lower layer
and its prediction. Traditionally, collected DTB field data are pre-
sented in two-dimensional (2D) digital versions of geological
maps. However, assigning a vertical component in the areas
without soil-rock sounding data in a way that provides a repre-
sentative interpretation of the subsurface spatial DTB distribution
is a challenging procedure (Abbaszadeh Shahri et al., 2020).
Despite all the benefits of 2D mapping, there is a trend favouring
in use of integrated 3D models with the ability to combine terrain
data and aerial photos for geo-engineering applications. Such
models provide a visual perspective of the study area, which en-
ables more accurate interpretation through geological sequences.
However, depending on the quality of the datasets used and the
approach applied, the level of accuracy and the confidence of the
model can vary in terms of their ability to prevent conflict with
interpolation algorithms. In this respect, if adequate numbers of
soil-rock soundings are not accessible, the pseudo data for
unsampled locations can be estimated through the knowledge of
experts or other methods, such as nearest neighbour and grid cells
(Tacher et al., 2006; Abbaszadeh Shahri et al., 2020; Yan et al.,,
2020). These methods are effective and easy to use, but the
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Table 3
Characteristic of optimum ANN-based structures.
Model TA R? Neuron Topology Activation function RMSE iy
TR TE VL Hidden Output TR TE VL
Cr+ CGD 0.96 0.96 0.94 40 3-28-12-1 Hyt HyT 6 5.55 63
Python RMSProp 092 0.93 0.9 40 3-25-15-1 PRelu PRelu 806 6.75 7.84

Note: TR — Training data; TE — Testing data; VL — Validation data.
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and concerns over insufficient data were addressed using the RDC
approach (Abbaszadeh Shahri et al, 2020). This intelligent
knowledge-based system is iteratively applied on test point co-
ordinates to generate new shuffled synthesised DTBs, prescribing

uncertainty in the generated pseudo observations in faraway
points is increased because of the lack of information nearby, as is
the case in all interpolation methods. Accordingly, the generated
pseudo data play an important role in building knowledge of
phenomena within a specific topic, and data synthesis is thus at the number of soundings and statistical noise for the region be-
the centre of the scientific enterprise in the software engineering tween soundings. Nevertheless, the generated 3D models are built
discipline (Cruzes and Dyba, 2011). In this study, the drawbacks over limited number of neighbouring data in relatively small-scale
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areas and thus it is not always clear which procedures can provide (Fig. 6). This implies that the automated procedure provides more

the most appropriate DTB surfaces. flexibility in the modelling process to be developed for future data.
Fig. 6 shows the results of the creation of a visualised 3D model Therefore, it can be relevant to exploiting more comprehensive

of the study area from applied data, depicting the retrieved outlines concepts on subsurface geological or petrophysical distributions.

of the subsurface spatial distribution of DTB using the designed Accordingly, such models are a preferred tool for geo-engineers and

training system. The presented 3D model is computed directly from decision planners in the observation and analysis of geo-

the soil—rock soundings, because the embedded automation pro- environmental engineering issues within a project.

cedure can be quickly regenerated. Accordingly, the rock outcrops

in the area can be identified by integrating the generated ground 4. Validation and discussion of DTB models

surface (Fig. 6a) and spatial measured DTB (Fig. 6b). Such incor-

poration can provide a 3D subsurface model with high resolution Modelling the spatial distribution of subsurface DTB plays an

and adequate predictive accuracy in geo-engineering projects important role in proper site characterisation. Integrating such DTB
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Established confusion matrices of applied models.
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models with geological and geomechanical information can pro-
vide scalable 3D framework for geo-engineering applications,
However, 3D spatial DTB modelling in complex terrain must have
high resolution data to provide an accurate characterisation of
subsurface features and a realistic overall depiction to capture any
proven or hypothesised subsurface connections. Moreover, due to
observed conflict in the results of interpolation algorithms in the
manipulation and handling of all requirements, it is not always
clear which modelling tools can best reflect DTB surfaces. Here, the
validity of the developed models is discussed through comparison
with traditional OK and performance analyses using confusion
matrix. The models were then ranked according to different sta-
tistical metrics.

4.1. Ordinary Kriging

Kriging (Krige, 1951) is one of the most commonly used prob-
abilistic interpolation methods for unknown values of spatial and
temporal variables (Dauphiné, 2017), which gives a least square
estimate of data (Remy et al,, 2011), In this algorithm, the distance-
weighted incorporation with the spatial variability is followed to
estimate the values of the unsampled locations (Miller et al., 2007).
In OK as the most commonly applied Kriging method, the optimal
weights for reducing the error variance are determined using the
embedded semi-variogram to ensure an unbiased estimator and
minimise the estimation variance (Wackernagel, 1995). Using OK,
the DTB can be locally estimated based on the neighbourhood lo-
cations as

m(h)
Y1) = 5y 2 IPTBCx) = DTBGs = @

where y(h) is the semi-variogram, and m(h) reflects the number of
observation pairs of DTB(x;) and DTB (x;+h) samples at distance h in
locations x; and x;+h, respectively. Further, the spatial estimation of
DTB for unsampled location, DTB (xg), is then calculated through the
linear combination of the observed values, z; = Z (x;), and weights
wi(x) (i=1,2,

DTB(xg) = [wy wo...wy]|

= > Wilxo)Z(x) (10)
1

N

where w; denotes the weight values around the unsampled loca-
tion. In OK as a linear unbiased estimator, the sum of all the weights
isequal to 1.

Therefore, OK in skewed data can better represent estimated
error variance than the Kriging (Yamamoto, 2005). Referring to the
reasons given above, after a series of analyses, the predicted DTB
subjected to training datasets using 12 lags due to better perfor-
mance was selected and reflected in Fig. 7. Generally, geostatistical
and Al techniques can be used as forecasting strategies of subsur-
face or geological characteristics. However, because of high het-
erogeneity of spatial distributions in the prediction process, the
success of the geostatistical interpolation algorithm (Fig. 7c) was
significantly lower than that of Al models (Fig. 7a and b). The
development of such modelling process provides an extensive
collection of visual data to describe 3D objects. This is an important
aspect of the procedure designed in the study, where the 3D objects
of each point of the study area can be described using geo-location
vectors that serve as a search key in the database. Comparing
different models to compensate the weaknesses of the applied
techniques can assist in finding a robust tool across the data sources
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Table 5
Compared CA, ME and improved progress of optimum models.
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observed differences in the performance of the programming lan-
guages is related to the optimisation methods and initialised con-
dition in the training procedure.

Model CA (%) ME (%) Progress (%) Improvement Ranl¢
compared to other
‘models (%)
TE VL TE VL C++ Python OK 5. Concludi
Ci+ 074 075 026 025 13 27 24 1 )
Python 071 073 029 027 2.7 -27 219 2
oK 058 057 042 043 -17 226 -219 3

(e.g. Chew, 1989; Dickerson et al., 1997; Held, 2001; Domiter and
Zalik, 2008; Mei et al, 2013). The differences between the
measured DTB and those predicted by OK and ANN models are
reflected in Fig. 7d—f.

4.2. Progress control using confusion matrix

Confusion matrix or error matrix (Stehman, 1997) is an intuitive
visualised table layout to describe the performance of a model on a
set of data. In this matrix, each row and column represent the
predicted and actual classes, respectively. Therefore, each array [ajj]
shows the number of true labelled instances in a categorised class
and thus provides an easy platform to find mislabelled classes. It is
also able to show the relations between the individual classified
outputs and the true labelled inputs, In practice, a confusion matrix
conceptualises the error probabilities of developed models in
assigning the individual predicted outputs into the classified input.
Accordingly, the best performance is that obtained with zero
values, except on diagonal arrays, and thus the better the perfor-
mance, the better the effectiveness. Using confusion matrix, the
classification accuracy (CA) and misclassification error (ME) for the
applied models can be quantified (Asheghi et al., 2019). As pre-
sented in Tables 4 and 5, the ANN models (C++ and Python) have
more true predicted instances (227 and 222, respectively) than the
OK (174). The performance of C++ code with 75% correct estima-
tion showed 2.7% and 24% progresses in precious predicted DTB
model than Python code and OK, respectively.

4.3. Ranking error metrics

Statistical error metrics are commonly used to evaluate the
performance of models. Here, the models were assessed using
mean absolute percentage error (MAPE), mean absolute deviation
(MAD), RMSE, R? and calculated residuals (CR), and indices of
agreement (IA). The MAPE is one of the most popular indices used
to describe the accuracy and size of the forecasting error, while the
MAD shows the variability of datasets using the average distance
between each data point and the mean. Using the IA, the compat-
ibility of modelled and observed values is investigated (Willmott,
1984), whereas residual represents a fitting deviation of the pre-
dicted value from measured one. Therefore, higher values of IA and
R? as well as smaller MAPE, CR, MAD and RMSE can be interpreted
as a higher predictability level. As shown in Table 6, C++ contrib-
uted the best total rank among the three methods. The reason for

Table 6
Results of statistical error criteria in evaluated model performance.

remarks

Due to the variation of subsurface bedrock topography, the
production of a more accurate, generalised predictive model for
unmeasured DTB areas is of great importance in geo-engineering
projects. Such models can be developed and visualised using a
learning scheme and finite number of datasets through the trained
intelligence system platform. Furthermore, a robust 3D regional
framework can reflect the potential subsurface risks associated
with the spatial distribution of DTB in geo-engineering applications
with a considerably more powerful geological understanding than
traditional 2D maps and cross-sections. Moreover, combining the
code tools and scientific approaches can assist in the creation of
more comprehensive and useful 3D predictive models.

In this study, concerns associated with the generation of a 3D
visualised subsurface predictive DTB model were addressed using
an automated intelligence training system by means of C++ and
Python computer programming environments. To enable more
efficient learning, network models composed of different internal
characteristics were examined to capture the optimum models.

The lack of data in a part of the study area was compensated
using the RDC and 62 new pseudo datasets to extend the region of
influence for each soil-rock sounding and decrease the degree of
variability in the extrapolation direction. Topologies 3-28-12-1 and
3-25-15-1 were characterised as the optimum predictive DTB to-
pologies for the 2028 data points. Referring to CA (Table 5), the
model developed using C++ showed 2.7% and 24% progress in
comparison to Python code and the OK technique, respectively.
Subsequently, the ranked models using supplementary error in-
dicators reflected almost superiority of the code developed in C++.
Accordingly, the 3-28-12-1 topology trained by the CGD algorithm
subjected to hyperbolic tangent (Hyt) activation function was
selected as the most appropriate structure. The inability of OK to
interpolate and handle outlier data was verified with the observed
over/underestimated DTB values by using the randomised datasets.
It was concluded that OK cannot be presumed to be a representa-
tive model for the entirety of the study area, while the developed
intelligence models provide significant cost-effective and accurate
enough tools in subsurface DTB geo-spatial prediction purposes.

In practice, the dedicated 3D predictive DTB model can present
geospatial distribution and the boundary between the overlaid
sediments from the hard rocks. This issue can play a significant role
in the design phase for the city of Stockholm, which has many
ongoing projects in underground openings and transport tunnels.
From a geo-engineering point of view, DBT enables the modelling of
induced vibration by tunnelling, landslide risk assessment and
groundwater. This makes such a DTB model an indispensable tool
for decision makers in urban development projects (e.g. building
houses, roads, railways and bridges), where substantial land surface
processes can be imposed.

Model Performance criteria Ranking of criteria
MAPE RMSE 1A MAD R? CR domain MAPE RMSE IA MAD R CR Total rank Sort order
Cii 028 63 098 103 094  [-29,28] 3 3 3 3 3 3 18 1
Python 041 7.84 0.97 1.21 09 [—47, 49] 2 2 2 2 2 1 1 2
0K 0.5 9.87 0.95 1.68 0.84 [—54,19] 1 1 1 1 1 2 7 3
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Uncertainty quantification { UQ ) is an important benchmark to assess the
performance of artificial intelligence ( Al ) and particularly deep learning ensembled-
based models. However, the ability to estimate the UQ using current Al -based
methods is not only limited in terms of computational resources but also requires
changes to topology and optimization processes, as well as multiple performances to
monitor the model instabilities. From both a geoengineering and societal perspective,
the predictive groundwater table ( GWT ) model presents an important challenge,
where a lack of assessed UQ limits the validity of findings and may undermine
science-based decisions. To overcome and address these limitations, a novel
ensemble, the automated random deactivating connective weights approach {
ARDCW ), was presented and applied on retrieved geographical locations of GWT
data from a geoengineering project in Stockholm, Sweden. In this approach, the UQ
was estimated via a combinaticn of several derived ensembles from a fixed optimum
topology subjected to randomly switched off weights, which allows predictability with
one forward pass. The process was developed and programmed to provide trackable
performance in a specific task and access to a wide variety of different internal
characteristics and libraries. A comparison of performance with the Monte Carlo
dropout ( MCD ) and quantile regression { QR ) using both computer vision and
control task metrics showed significant progress in the ARDGW . This approach does
not require changes in the optimization process and can be applied to already trained
topologies in a way that outperforms other models.
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Abstract

Uncertainty quantification (U/Q) is an important benchmark to assess the performance of artificial intelligence
(A7) and particularly deep learning ensembled-based models. However, the ability to estimate the UQ using
current A/-based methods is not only limited in terms of computational resources but also requires changes to
topology and optimization processes, as well as multiple performances to monitor the model instabilities. From
both a geoengineering and societal perspective, the predictive groundwater table (GH1) model presents an
important challenge, where a lack of assessed U/Q limits the validity of findings and may undermine science-
based decisions. To overcome and address these limitations, a novel ensemble, the automated random
deactivating connective weights approach (4RDCW), was presented and applied on retrieved geographical
locations of GWT data from a geoengineering project in Stockholm, Sweden. In this approach, the UQ was
estimated via a combination of several derived ensembles from a fixed optimum topology subjected to randomly
switched ofT weights, which allows predictability with onc forward pass. The process was developed and
programmed to provide trackable performance in a specific task and access to a wide variety of different internal
characteristics and libraries. A comparison of performance with the Monte Carlo dropout (MCD) and quantile
regression ((R) using both computer vision and control task metrics showed significant progress in the ARDCW.
This approach does not require changes in the optimization process and can be applied to already trained
topologies in a way that outperforms other models.

Keywords: Uncertainty quantification; automated modelling, ARDCW, ground water, Sweden

1. Introduction
Groundwater table (GWT) is not only onc of the Nation's most important natural resources but also a nonlincar

time-dependent concern in many geoengincering projects (Hu & Jiao, 2010; Parry et al., 2014; Tang ct al., 2017;
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Salvo et al., 2020). Modelling of this concern is applied to conceptualize and integrate knowledge on the natural
and engincering disciplines to address a range of issues in different spatial and temporal scales
(Bizhanimanzar et al., 2019; Mohammadi, 2009; Yeh et al., 2015). However, due to a number of embedded
nonlinear complexities in the system, modelling of GWT is an inherently difficult task. Moreover, the sources of
uncertainties related to model parameters, underlying conceptual assumptions, structure of model, geological
conditions, obscrved spatial data (i.c., lack of data on natural variability), and stcady- statc GH'T should be
considered {(Beven & Binley, 1992; Hauser ct al., 2017; Stedinger ct al., 2008; Ych ¢t al., 2015). As a result, the
computer code models have primarily been developed over the simplified assumptions using long term time
series through different approaches such as statistical techniques, approximation methods and numerical analyses
(Yan et al., 2018; Rushton, 2003). Therefore, evaluating the robustness and accuracy performance of a predictive
GWT model using uncertainty quantification (U/Q) analysis is often required. Nowadays, alternative modern
computational artificial intelligent techniques (477) lead to systematic IO analysis that can be effectively
applied to generate a GI'T model (Guillaume et al., 2016; Yin et al., 2021; Chen et al., 2020; Sahoo & Russo,
2017, Wunsch et al., 2020).

Uncertainty can simply be described as knowledge situations involving imperfect or unknown information
(Gardenfors & Sahlin, 1982), To quantify the uncertainty, three sources including physical variability of
equipment, data, and model error should be considered (Barford, 1985; Kennedy & O'Hagan, 2001). In the
modelling process, the U0 methods are described in the context of different factors such as input variabilities,
assumptions and approximations, measurement errors, and sparse and imprecise data (Yan et al., 2015). In the
literature, statistical techniques, sensitivity analyses, Taylor serics approximation, Monte Carlo simulation,
numerical estimation, and probability distributions are the most commeonly used methods to assess the UQ (e.g.
Cox & Baybutt, 1981; Glimm & Sharp 1999; Bérdossy & Fodor, 2001; Uusitalo et al., 2015; Asheghi et al.,
2020; Elam & Rearden, 2017). However, when using these techniques for value-based judgements, all sources of
uncertainty may not be quantifiable (Morgan & Henrion, 1990), The taxonomy of different methods applied to

estimate the UQ are given in Figurel.
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Figure 1. Taxonomy of the {/Q methods

In statistical techniques, the UQ is usually cvaluated through the estimated variance and determined confidence
limits by assuming normally distributed error (e.g. Eisenhart et al., 1983; Cacuci & Tonescu-Bujor, 2004; Jiang et
al., 2018; Zhang et al., 2020). Since the quantification is most often performed by statistical indices (e.g. mean,
median, population quantiles) due to the limited sample size, estimations must be provided with the associated
confidence intervals (Geffray ot al., 2019), Therefore, duc to underlying foundations, such as measurement
errors, material properties, unknown design demand models, and stochastic environments, the applicability of
statistical techniques is limited (Taper & Ponciano, 2016). Taylor series approximation can be used to determine
theoretical error bounds but is very complex to derive and also tends to quickly increase the risk of error (Barrio
ct al., 2011). Montc Carlo is mainly applicd to cxplain the probability density function but is a complex process
and requires a large number of simulations and computational resources when the dataset is large. Therefore, it
only provides statistical estimates of results, not exact figures (Atanassov & Dimov, 2008). In numerical IO
methods, the results, which are simulated by computer codes, inherently involve error or uncertainty. Such
drawbacks can be addressed in part by defining the error magnitude or bound the error in a given simulation
(Freitas, 2002). By using probability distributions, accurate information on the uncertainty can be achieved, but
infinite extension along either side of the most probable region creates a sophisticated situation that is difficult to
interpret (Kabir et al., 2018). Moreover, quantitative measures may bias the description of uncertainty towards
the more computational components of the assessment (Bardossy & Fodor, 2001). Thereby, the concepts and
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methods used for UQ make it difficult to communicate the results effectively. This implies that the analysis of
the UQ through cnsembling methods is one of the main benchmarks to assess the performance of complex
systems (Vrugt & Robinson, 2007; Zhang et al., 2021), especially in geoengineering and GWT predictive
models, which often suffer from inadequate experimental or data (e.g. Whitman, 2000; Huber, 2016; Chahbaz et
al., 2019; Sepulveda & Doherty, 2015; Li et al., 2018; Wu & Zeng, 2013). Furthermore, computing the
contribution of cach crror component on total uncertainty is difficult and lcads to cxtreme weighting schemes
with applicability that is often questionable. Therefore, no unified applicable methodelogy exists for combining
uncertainties. Since these methods typically yield an estimate of the total variance of measurement values,
reliance on statistical variance can produce misleading results that are not readily applicable (e.g. Goodman,
1960; Yager, 1996; Farrance & Frenkel, 2012; Borgonovo, 2006).

Dug to the revolution of different types of 47T in recent years, and decp neural networks (DNAs) in particular,
these mechanisms have shown impressive state-of-the-art performance on a wide variety of engineering tasks
dealing with challenging scientific data analysis and UQ problems (e.g. Vrugt & Robinson, 2007; Abbaszadeh
Shahri et al., 2020; Chahbaz et al., 2019; Hernandez & Lopez, 2020). However, despite the rapid emergence of
AIT and the subsequent DNN-based UQ analysis (¢.g. Gal & Ghahramani, 2016; Krzywinski & Altman, 2013;
Zhu et al,, 2019), the performance of these methods may suffer from a series of shorteomings, such as
complexities arising from topology and hyperparameter choices (Asheghi et al., 2020), computational cost for
multiple trainings, and weak performance due to model instabilities (Foong et al., 2019). Furthermore, since the
DNNs tend to produce overconfident predictions, accurate outcome, especially in out-of-domain data, is an
important issue (Loquerico et al., 2020; Klotz et al., 2021). Morcover, current DNN-based UQ methods, such as
Monte Carlo dropout (MCD) (Gal & Ghahramani, 2016) or quantile regression (OR) (Weerts et al., 2011),
behave differently at training and inference time due to implemented changes in topology and optimisation
processes.

When using the MCD, the UQ is estimated through a set of trained topologies, which are subjected to randomly
removed neurons, while in the QR, the UQ is captured through a conditional quantile of a dependent variable
without assuming any specific conditional distribution. However, these methods typically ignore prior
knowledge about the data and consequently tend to make assumptions that lead to oversimplification and thus
underestimate uncertainty (Waldmann, 2018). Such concerns imply that developing new schemes or approaches
to present robust UQ estimation is still a crucial challenge with a tremendous potential for application in

complex geoengineering problems, particularly for GWT pattern modelling.
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In Sweden, the GWT is an important part of sustainable ecosystems and for human water consumption. Ilowever,
the GWT pattern can be affected by geoengineering projects in combination with changes in the natural
variability and the climate. Due to the significant benefits offered by an adequately accurate predictive model
and the approved efficiency of AIT in providing more precise solution than many simulation processes, this
paper aims to address and then examine a new systematic (Q analysis approach through the development of an
automated procedure.

As a result, a novel state-of-the-art ensemble automated random deactivating connective weights approach
(ARDCW) was proposed. In this framework, instead of dropping the neurons, the connective weights between
layers of the identified optimum topology are randomly deactivated. To overcome the overfitting problem and
avoid being trapped in local minima, the ARDCW uses several embedded internal and nested loops to monitor all
the topologies based on different hyperparameters. This approach was then experimentally applicd on 244 sets of
GWT geolocation data in an urbanized area of Stockholm. Due to the use of the optimum topology, ARDCW led
to a state-of-the-art performance of UQ analysis in which the produced multiple predictions can be interpreted in
terms of average errors. In comparison to other methodologies such as MCD and QR, the evaluated and

compared performance of ARDCH showed superior capability in the prediction of spatial GH/'T.

2. Study arca and data source

The study area, which contained more than 300 investigated GIFT wells, encompasses 20 km of an ongoing
highway project in south Stockholm, Sweden. Among the monitored G/#7 data, 244 points were screened and
compiled Irom continuous recorded intervals from 19 (o 25 September 2020. The location of the study arca with
respect to the generated long-term map of spatial monitored GWTs for the entirety of Sweden is presented in
Figure 2a, which was retrieved from Geological Survey of Sweden. As shown in Figure 2b, in the northwest of
the study area, Milaren Lake controls the GH'T toward the downstream, while the coverage in the northeast
consists of bedrock outcrop incorporated with intermediate soil-filled valleys. This implies that the topographical
variation in the surface ol the bedrock dominantly controls the groundwater [lows. The GWT in the high terrain
Masmo hills, located in the middle of the study area (Figure 2b), mostly follows the surface topography, but
without connecting to any nearby aquifers. To the southwest (Figure 2b), homogenous bedrock and a uniform
GWT pattern can be observed. [lowever, in the southeast of study area, the bedrock is highly heterogenic without
uniform GWT levels duc to the influence of cracking on hydraulic connectivity. An integrated spatial distribution

of ground water aquifers with the GWT data over the entire study arca is presented in Figure 2¢.
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Figure 2: Distribution of GWT in Sweden (a), the overlaid digital clevation map and satellite image of the study
area (b), the mapped aquifers and monitored GH'T data in the area (c¢) (Figure a and ¢ were retrieved from

Geological Survey of Sweden)

3. A summary of UQ analysis using AIT

Estimating the UQ as one of the main challenges in A/T needs extensive exploration; however, currently, the
focus is often on giving a best estimate as defined by a loss function. Referring to Figure 1, Bayesian techniques
(MacKay, 1992) are the main A/7-based framework for {/Q analyses. However, they are often computationally
slow and difficult to train because they are traditionally formalized through parametric probability distributions
of network activations and weights (Hernandez-Lobato & Adams, 2015). Sampling technique (Gal &
Ghahramani, 2016) is another method used for UQ estimation, but due to the inability, explicitly modelling
generates overconfident predictions (Hernandez & Lopez, 2020). Since an input with large noise provides wider
model uncertainty than the same input with lower noise, the risk of underestimated uncertainties is increased
because sampling-based methods generally disregard the relationship between data and model uncertainty (Kabir

et al., 2018; Bardossy & Fodor, 2001; Gal & Ghahramani, 2016).
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Despite the significant performance of the Markov chain Monte Carlo (MCMC) in predicted UQ, it is mostly
appropriate for small networks and thus computationally expensive for large DNNs (Quinonero-Candcla ct al.,
2006). However, this shortcoming can be overcome using stochastic gradient MCMC (Chen et al., 2014), which
only needs to estimate the gradient on small sets of mini batches. Since the MCMC requires a significant amount
of time to converge on a desired distribution, the sufficient number of iterations is unknown (Neal, 2012).
Therefore, to provide a relatively faster approximate Baycesian solution, different methods such as variational
inferences, assumed density filtering, expectation propagation and the stochastic gradient Langevin diffusion
technique have been introduced (Lakshminarayanan et al., 2017). However, the posterior UQ in the variational
method is typically underestimated rather than overestimated in the expectation propagation technique.

QR is a type of powerful regression analysis tool that estimates the conditional median (or other quantiles) of the
responsc predicted values, where the quantile itself is a parameter for the loss function. This implics that for cach
quantile, the training process should be analyzed through individual asymmetric weighting (Yang et al., 2016).
Accordingly, the trained model, when subjected to different quantiles, generates different bounds that picks out
the conditional quantiles away from the median, that is, the 95% prediction intervals can be found when
subjected to the quantiles 0,025 and 0.975. The mean square error, as the most commonly used loss function,
would then correspond to the Gaussian distribution, Accordingly, the mode (peak) of this distribution
corresponds to the mean parameter, and DNNs predict the mean value of the output, which may have been noisy
in the training set.

Furthermore, the dependency of the quality of prediction to computational complexity, degree of approximation
and correctness of the prior distribution imply that the estimated UQ using these methods cannot be guaranteed
(o provide underlying beliefs (Hirschefeld et al., 2020).

The UQ can be estimated using ensemble-based methods, where the inputs are trained and passed through
multiple networks (Figure3A). Greater accuracy can be achieved by using such metheds than any individual
model because the predictions vary across multiple runs of a set of models M = {M,, M, ..., M,} rather than
(raining a single M;. However, the primary drawback of any ensemble-based &Q method is the increased training
time, depending on the size of the ensembles. As presented in Figure 3, in addition to ensemble methods, the UQ
can be estimated through mean-variance, distance-based strategies and union-based strategies (Hirschefeld et al.,
2020; Angiulli & Fassetti, 202(0; Zhang et al., 2020). The problem with training Bayesian neural networks for
large data scts can be solved by using mean-variance estimation, where the output layer is modified and trained

using a negative log likelihood loss to predict both the mean and variance of the interested input (Hirschefeld et
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al., 2020). Through distance-based methods, the minimum distance between each interested prediction from its
nearest neighbours in the training set is interpreted as uncertainty. The larger the distance between the training
sets and predictions, the higher the error and thus the greater the uncertainty (Angiulli & Fassetti, 2020).
However, significant sensitivity of the calculated distance to outliers is the major drawback of this UQ estimator.
The union-based method (Huang et al., 2015) is a combined confidence estimator, where the output of the
trained ncural network is fed to another model to provide an ensemble model and thus calculate uncertainty into

the task-specific latent spacc.
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Figure 3. Simplificd schematic of different strategics for UQ analysis: (a) ensemble-based, (b) distance-based,

(c) mean variance and (d) union-based (P£: Predicted error; °V: Predicted variance)

The MCD (Gal & Ghahramani, 2016) is onc of the most widcly used UQ analysis methods and can cven be
implemented on an alrcady trained model. In this procedure, any trained topology with dropouts is used to
prevent overfitting and can thus be interpreted as an approximate inference of the posterior weights.
Accordingly, the average of multiple predictions for the analysis of distributions is considered to calculate
meaningful variance. In a fixed topology during the MCD process, all in/out connective weights and biases of
dropped neurons arc ignored. This implies that in cach dropout, the data is trained using a different topology,
while none of these connectives participate in the prediction process nor will they be updated. Therefore, the
dependency of the estimated UQ on the dropped neuron and internal hyperparameters is the main drawback of’
MCD. Moreover, due to the training of several topologies, the produced approximations can be categorized in
ensemble techniques, which significantly enable improved overall performance (Dictterich, 2000). Tn
comparison to the Bayesian approach (MacKay, 1992), which attempts to average and thus find the single best

10
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model (or parameters), ensembles combine the topologies to obtain a more powerful model. Thereby, ensembles
potentially provide a complementary source for predictive UQ estimation. Referring to Figure 4, the UQ through
the MCD is predicted over multiple networks at the test time, where a model with # neuron can provide a
collection of 2" possible topologies as an ensemble combination (Srivastava et al., 2014).

Input , Hidden layers Output

M, M, M
Figure 4. Overview of MCD modelling process mimicking ensemble-based methed (highlighted and dash lines

correspond to dropped neurons and weights)

4. Proposed UQ approach

In recent years, estimating the UQ using different A/7% has increased, as the provided models can offer simple
but precise solutions in many engineering simulation problems, A systematic UQ analysis can be applied by
considering a combination of several components, including data, model structure and parameter values, This
implies that the UQ as a function should be conceptualized in a concrete mathematical sense and thus be

amenable for programming. Since noise will be produced in each random dropping, which will affect results,

therefore, mathematically, the performance and predictability of the DAN structure should always be evaluated
with the original optimum model. By using the dropout concept integrated with the optimum topology, the
ensemble automated random deactivating connective weights (ARDCH) approach was proposed. The ARDCW is
solely focused on randomly switched off weights, not neurons, where the remaining weights are forced to
participate in learning processes and assist in decreasing the overfitting. Accordingly, this approach uses an
optimum trained topology capable of performing a given task even when the weights are randomly sampled.
This implies that the training of multiple different topologics is avoided, as the uncertainty will be estimated by
changing the internal assigned weights of a fixed optimum model.

In a DNN topology, all the m neurons of the layer are associated with the probability p, otherwise is dropped (set
to zero), with probability /- p (Ilinton et al., 2012). According to probability theory, the expected value of a

random variable (EfX/) is a generalization of the weighted average with probabilitics of p; as:

E[X] =Xk xp; where Zl,p; =1 6]

11
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Mathematically, for a constant random variable, E[X=c]=c. Therefore, E[X] with equiprobable outcomes {c¢/, ¢z,

.., ¢n} expresses the arithmetic mean of the terms with the probabilitics P(X=¢;). Using this concept, the impact

of dropped weights () in UQ can be described with mean field theory (Kadanoff, 2009) as:

. Wij  withp(c)
Wy = ¢ 2
Y {O otherwise @

Where P(c) denotes the probability of keeping a weight, whereby the implemented neurons are kept with the
probability p and otherwise will drop (0) with probability 7-p. This implies that the UQ analysis can be
generalized by dropping the connective weights with probability /-p rather than the neurons (Wan et al., 2013),
Consequently, in a topology with 4 hidden layers, [ € {1,2, ..., h}, where Z and y'¥ denote the vector of inputs
into and output from layer /, the feed-forward process is described as:

Zl(Hl) — Wi(i+1)yl n b[(H»I) (3)

yl(HU - I.(Zian)) @

th

Referring to neural network topology, the activity of dropout weight of the /# neuron in 4™ hidden layer (alt),

and consequently the corresponding output (), can be expressed by:

af =S X;wiishal  witha) = X; )
oF = f(al) = f(Txan Xy wiiolal)  with 0P = X; )

Where: §{; is a gating 0-1 Bernoulli variable with P(§f;=1)=p}.
Therelore, in dropout, the output of layer £ using clement-wise product (*) is then presented through:

5 2 WS gt 4 1) 4507 ™
Accordingly, the expectation of the activity of all neurons for a fixed input vector taken over all possible 5,‘,
variables, and thus the possible ensemble models, can be achicved through:

E@) =T DywlipjE(a)  forh>0 ®
The dropout is not applied on a fixed input that produces a constant output in the /* layer (0} ), thus, the dropout
on the 4 hidden layer is then presented with:

var(al) = Zea(wf)’ (0)pjC1 = 1) ©
Where; Var is the variance.
Therefore, the expectation of dropout gradient as a random variable is the regularized ensemble error associated

with all possible models (£.s) and is cxpressed by:

regularized Egns

_ oot s pera’)

s g
+wp (1= p)X? ) +wX?Var(8;) (10)
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E[dropout gradient] = E s + 0.5 X%, w?XZ Var(8;) (11)
Where; Ep denoles the error of the network with dropout.
Referring to Eqs. 8 and 11, additional layers corresponding to real-valued output for error or variance can be
attached to the optimum topology. This implies producing a multi-objective model, where the output of error and
variance are also predicted using the same fixed optimum DAV with an added layer(s).
Referring to presented block procedure of the proposed 4RDCW (Figure 5), it does not require any changes in
optimum topology and thus can even be used for already trained models. In this process, the optimum topology
was captured through the proposed automated strategy by Abbaszadeh Shahri et al., (2021a). The performance of
the optimum model is then monitored through the randomly sampled deactivated weights using an automated
dropout procedure for the achicved database. Since all deactivations occur for the one optimum topology, the
ARDCW captures different models and as shown in Figure 3a, it can be interpreted as an cnsemble-based
Bayesian approximation of the Gaussian process probabilistic model. Accordingly, the inadvertent tuning on the
model is addressed through a regularization strategy, which needs a robust implementation that accounts for
floating-point stability and reproducibility in geoengineering-related problems. The minimum number of
sampled weights in this study is onc, while the maximum number of desired droppings was sct at 50% of the
whole connective weights. However, selecting this rate for dropout is flexible and user defined, but the
dependency on the topology and network type (shallow or deep) that overfits the training data should be
considered, Moreover, the greater the number of deactivations, the more examined ensembles, which thus
requires more analysis time.
As an advantage, in each examination, the model is trained using a constant topology but with a different set of
randomly deactivated weights in the layers. Therefore, the outcome can be considered as an averaging ensemble
of many different models trained on one batch of data only. The ARDCW can be regularized to calculate the
mean and variance of randomized data and can then predict unlabelled data. Furthermore, using the optimum
model will minimize the problem of overlfitting, while the overall performance of the DNN topology due to

randomly switched off weights in ecach layer becomes less sensitive.
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Figure 5. Block diagram of the proposed ARDCW approach for /Q modelling

5. Result analysis of experimental application

According to Figure 5, when applying 65% of the compiled G W7 data, a 3-32-8 topology subjected to
hyperbolic tangent activation function trained with quasi-Newton algorithm was considered as the optimum,
which was then retrained using two extra predicted outputs, including the error and variance. Considering the y
and ¥ as the target and model output, respectively, the error and variance are predicted through (3- ¥) and (3.
Referring to Figure 4, a series of models were retrained using the updated dropout weights database (Figure 5)
subjected to the fixed defined custom loss function in optimum topology for each mini batch. To visualize the
range of predicted distribution, the results of the randomly deactivated weight using K-fold validation for a series
ol dropout test sets are presented in Figures 6 and 7. Accordingly, Figure 6a shows the variation of the predicted
GWT from all the K-fold validations using ARDCW, where the uncertainties of each point can then be estimated

from these outcomes. Subsequently, the errors between the observed and predicted GWT in each K-fold
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validation are reflected in Figure 6b, which shows high error values and thus high uncertainties at data points,
Figure 6¢ depicts the variance of the crrors as deseribed where uncertainties arc high. According to these
outcomes, PE and PV in the analyzed UQ, when subjected to different random dropouts are more preferred due

to lower variance estimators.
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Figure 7. Comparison of the distribution of optimum and dropout models for (a) training and (b) testing data sets

Proper experimental measurement associated with an estimated level of confidence not only allows a scientific
hypothesis to be confirmed or refuted, but also facilitates the judgments on the quality of the data and leads to

meaningful comparisons with other similar values or predictive models. Accordingly, 95% prediction interval
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Due to the dynamic nature of areas without data, creating a 3D visual perspective depicting the predictive spatial
distribution of the GWT levels is a challenging task, but this can provide more utility in interpreting the
subsurface characterization (Abbaszadeh Shahri et al., 2020, 2021b). However, the level of accuracy and the
confidence of the model can vary depending on the quality of available data and the approach. This is the reason
why pseudo data can therefore play an important role in building knowledge for unsampled locations (Tacher et
al., 2006; Abbaszadch Shahri et al., 2020; Cruzes & Dyba, 2011). Figure 9 shows the step-by-step creation of the
3D mwodel of the study area depicting the retrieved outlines of the uncertainties. Referring to the estimated UQ,
more comprehensive concepts on the spatial GWT pattern can be realized to avoid the relevant risk of facing
aquifers during geoengineering projects. Due to the ease of updating with new data, the flexibility of such
models provides a preferred tool for geo-engineers and decision planners in the observation and analysis of geo-

environmental engineering issues within a project.
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Figure 9. Incorporating the results of predictive optimum topology and the proposed ARDCH in visnalizing the
cstimated uncertainty: (a) surface of the arca, (b) measured GH'T, (¢) predicted GHT, (d) upper and lower limit

of estimated UQ and (e) the overlaid supplementary perspective for the entire study area

6. Discussion and validation

Predictive 4/T-bascd models arc indispensable tools in geoengineering applications, not only to cnsure the
function in the labelled variables but also to estimate the I/Q in unlabelled data. In recent years, several studies
have been dedicated to the importance of TQ in GIWT modelling and decision-making in difterent scales
(Middlemis & Peeters, 2018; WWAP, 2012). However, from geoengineering point of view, each parameter of a
geologic object can be a source of uncertainty, and thus in practice, the number of involved sources can be
innumerable. To evaluate the robustness and accuracy of the predictive spatial pattern of GWT, the U/Q analysis
is often required. Since standard A/7-based UQ procedures are still limited, developing an efficient method that
uses DVN predictive models in particular is of great interest for industrial-scale and real-world applications. In
the current paper, the presented UQ approach, ARDCW, is discussed and validated through contour maps of
predicted error in different dropouts, accuracy metrics, success rate, and through comparison with MCD and QR

methods.

6.1. Effects of dropout on estimated UQ

This concern was monitored through the comparison of the variation of captured distributions in post and prior
predictions with respect to the optimum topology. These variations are referred to in the ARDCHW by using the
saved updated database for each examined model (Figure 5). The comparison of different post distributions and
the corresponding residual contour map of the area are given in Figure 10, which helps to practically find a
function to fit variational objective data with the minimum penalty with respect to the prior distribution in the
optimum model, This implics that in case of a lack of obscrvations, the UQ can be interpreted through the

interpolation of unlabelled predictions.
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The uncertainty is generally evaluated from data and models due to the presence of noise and an imbalanced

training data distribution (Loquerico & Segu, 2020). In A/7-based models, the source of uncertainty occurs when

the feed data are mismatched, where the smaller differences between the observed G'W7 and those predicted by

ARDCW show a higher degree of safety in the prediction process (Figures 11a and b). Subsequently, the higher

differences can be interpreted as higher uncertainties in the prediction. Accordingly, the performance of the

optimum and examined models using ARDCHW using GWT, as well as error for the measured and unlabelled

prediction datasets, are given in Figure 11 (¢ and d).
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Figure 11. Variation of predicted G#'T and error for validation (a and ¢) and unlabelled data (b and d)
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6.2. Comparing different UQ models
6.2.1. Statistical metrics
The coefficient of efficiency (£c) (Nash & Sutcliffe, 1970) is one of the most widely used metrics to evaluate the

performance of hydrologic models:

_Elei-rp?

E.=1. 4
‘ 0 3, (0002

0: observed mean a2)

Where; O; and P; denote the observed and predicted data. E.€ (-c, 1.0] interval in which the value of 1.0
expresses the perfect fit. £=0 reflects large variability in the observed data, while £.<0 indicates that the 0
would have been a better predictor than the model. Further, £, physically is the ratio of mean square error
(MSE):

MSE = N3N (0, - P)? (13)
Therefore, £, represents an improvement over the coefficient of determination for model evaluation purposes in
that it is sensitive to differences in the observed and model simulated means and variance (Leavesley et al.,
1983; Wilcox et al., 1990).
To cover the lack and insensitivity of £. and R” in considering the calculated square differences between the
obscrved and predicted means and variances (Legates & McCabe, 1999), the index of agreement (Willmott,

1984) as the ratio of mean square and potential errors is defined as:

a4

The percentage of observed GWT (Neir) bracketed by C7 in the level of 95% (P2F*) is defined by:

P = Rawt 109 O]
Where; V shows the total number of GWT data. The properly modelled UQ is justified based on the closeness to
100%.
Referring to Jin ¢t al., (2010) the quality of the predicted UQ can be assessed using the average relative interval
length of the C/ (4RIL):

GWT GWT
1 UELSWE —Lc1SWT
ARIL%",QS = ;ZM (16)

obs
GWTY

Where; UCLﬁﬂ‘m and LCL?Z:";J express the calculated upper and lower C7 of the # predicted GW7, and # is the
4095
cr

number of total observations; thus, a lower ARILZ;™ value represents better performance.
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A comparison of these indexes in evaluating the predicted UQ using three different methods including ARDCW,
OR and MCD is given in Figure 11 and Table 1. Referring to P22", although both ARDCH and OR showed
competitive coverage of the true GIWT levels (95%) with respect to MCD (68%), the ranking score of ARDCH
was expressed to be superior to other methods. The closeness statistics of the ARDCW and QR methods can be

interpreted as similar properties of posterior distribution of predicted GIT for these methods.

Table 1. Comparison and ranking the I/Q models through statistical metrics

Performance criteria Ranking of criteria
Model
S b = w
& ) = - = v B m £ 32
= 2 N = 2% S = |k X T % oo 5 oz oI g
g 2 2% = g £ 82 B g 2
@ & £ 05

w
w
w
o
w
3

ARDCW 097 251 0.99 0.97 10.66 352 0.95 3

=}
%}

QR 096 2.99 0.99 0.96 10.44 273 0.95 2 2 3 2 2 3 3

w

MCD 0.94 35 0.98 0.94 9.5 576 0.68 1 1 1 1 3 1 1

e Olnered GiT

uantiie regression
Horte Cate aropout

i 0
Number of vlidation poinks

Figure 12. Compared PZP% of three models using validation dataset

6.2.2. Success rate using confusion matrix

The layout of the confusion matrix can intuitively describe the performance of a model on a set of data using the
true labelled instances (Asheghi et al., 2019). This concept practically conceptualizes the error probabilities of
developed models in assigning the individual predicted outputs into the classified input. The best performance is
with zcro valucs, cxcept on diagonal arrays. Referring to conducted confusion matrix (Tablc 2), ARDCW and QR
methods provide more truc predicted instances (33 and 29 out of 37) than the MCD. As presented in Table 3, the
performance of ARDCW in terms of classification accuracy and misclassification error at an 89% correct

classification showed 22% and 14% improvement in estimated UQ than the MCD and QR, respectively.
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425 Table 2. Comparison of the success rate of different U/Q methods for GWT data

ARDCW Results
=% = 5 8B E R T I _
= £ =2 2 B =2 = = s R
|<0.62] o 0 0 0 0 0 0 0 0 [ 0 0 0
10.62-6.98] o 5 0 0 0 0 0 0 0 0 3 5 0
16.98-13.34| [ 0 0 0 0 0 0 0 0 0 0 4 0 0 0
113.34-19.70] o 1 0 3 0 0 0 0 ) 0 0 [ 4 3 1
[19.70-26.06] o 0 0 1 8 0 [ 0 ) 0 0 [ 9 8 1
[26.06-32.42] o 0 0 0 0 8 0 0 0 0 0 0 8 8 0
[32.42-38.78] o 0 0 0 0 0 5 1 0 0 0 0 6 5 1
138.78-45.14| o 0 0 0 0 0 0 2 0 0 0 0 2 2 0
[45.14-51.50] 0o 0 0 ) 0 ) 0 1 1) 0 0 0 1 0 1
51.50-57.86| o 0 0 0 0 0 0 0 1) 1 0 [ 1 1 0
[57.86-64.22] o 0 0 0 0 0 0 0 ) 0 1 [ 1 1 0
[>64.12] o 0 0 0 0 0 0 0 o 0 0 [ 0 0 0
Note o 6 0 4 8 8 5 4 0 1 1 0 37 33 4
| MCD Results
Note o 1 4 2 1 9 5 3 1 1 0 [ 37 27 10
| OR Results
Note 2 3 1 3 10 7 5 4 1 1 0 [ 37 29 g
426
427 Table 3. Improvement of ARDCW in estimating the UQ compared to MCD and OR
Model Classification Misclassification  Progress Improvement compared to other models (%)
accuracy (%) error (%) (%)
Test  Validate  Test  Validate
Mco ARDCW OR Rank
MCD 0.69 0.73 0.31 0.27 0.04 - =22 -6.8 3
ARDCW 0.77 0.89 023 011 012 22 - 14 1
OR 0.73 0.78 027 0.22 0.05 6.8 -14 - 2
428

429  6.2.3. Uncertainty intervals in studied area

430 Sufficiently accurate modelling procedures are essential tools in subsurface geoengineering disciplines to reflect
431 fidelity between the real and counterparts. However, despite the enhanced computational power, different

432 sources such as modelling errors in describing the real system, numerical errors generated by mathematical
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equations, and data errors caused by uncertainties can cause the appearance of differences. A critical part of
prediction is an assessment of how much a predicted value will fluctuate duc to noise or variations in the data.
Figure 13 shows the 95% uncertainty intervals estimated with ARDCW for the studied area. It can provide the
distribution of different uncertainty levels and gives an indication of the reason for high uncertainties, for
example, if uncertainty arises from the lack of observed data or from sudden big changes in the groundwater
Tevels. This map can also help in the planning of future data collection and determining where to drill more

groundwater boreholes to reduce high uncertainties in cstimating the groundwater surface.
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Figure 13, Estimated uncertainty intervals using applicd GWT data (black dots) in the entircty of the study arca

6.2.4. Comparison of CT and PI

Due to the dynamic nature and time-dependent behaviour, the exact modelling of GIT problems is a complex
issue to resolve. The time dependent GWT data points over an interval can benefit from outlier removal to
present an overall perspective of variation in the study area as well as a better analysis and understanding and
thus uncover patterns in datasets for future forecasting (Shumway, 1988; Keogh & Kasetty, 2003). However, the
problem regarding the generalization from a single study, difficulty in obtaining appropriate measures, and
problems with accurately identifying the correct model (o represent the data should be considered.

Therefore, the bias and discrepancy of the applied models can be interpreted through the comparison of the
estimated UQ. Statistically, a predictive model is stable and under control if most of the predictions fall within
the range of the confidence interval (C7). This range refers to the long-term success rate of the method in
capturing the predicted output, where the wider the C7, the greater the instability. The C7 level of 95% reflects a

range ol values where 5% can contain the [alse mean of the population. Due to the lack of knowledge,
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observation error (variability of experimental measurements) and the underlying physics in GWT problems, such
a comparison (Figure 14) can show how accurately a mathematical model deseribes the true system in a real-life
situation. Mathematically, the variation in predicted UQ comes from the adjusted model parameters and,
correspondingly, the implemented algorithm as well as feed input variables whose exact values are unknown to
experimentalists or cannot be inferred by statistical methods (Kennedy & O'Hagan, 2001). Therefore, the
dimensionality of an engincering problem would cause variability in its performance, whereby the implemented

algorithm can provide discrete numerical uncertainty,
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Figure 14. Comparative plots of the applied method in UQ analysis at a level of 95% for C/ and £/

Concluding remarks

Al'based modcls arc becoming a standard computational and decision-making tool in civil and construction
industries. However, due to inherent complexities, computational costs and poor performance, most of the A7-
based {/Q methods rarely make the leap from research to production. Therefore, in this context the need for a
validated coding procedure able to meet the regulatory requirements was highlighted in the current paper. In
order to gain insight into the predictability level of the complex A7T-based predictive subsurface geoengineering
model, an evaluation of the estimated £/Q using simulation codes with iterative analyses is required.
Furthermore, since a model or method can be adjusted using a wide range of internal characteristics,
subscquently presenting reliable but robust UQ estimates presents a significant challenge. Thercfore, if A7

systems could reliably identify unlabelled data, they could be deployed with a greater degree of certainty. This
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concern is especially vital for geoengineering applications, where the expectation is to achieve the same
distribution for observations and the training data.

In response to greater demand for DNN-based UQ methods, the ARDCH, as a new state-of-the-art approach that
applies randomly weighted components that dropout at test time. was introduced and developed. Using ARDCW,
the estimated UQ was visualized using the average results of many ensembled predictive models derived from a
demonstrated Icarned optimum automated DNN topology through K-fold validation and randomly deactivated
weights. The issue of underestimate uncertainty, which is usually observed in most 4/T-based UQ methods,
originates from changes in model and optimization process. In this point of view, the ARDCW approach does not
require any changes in the topology and can be applied on already trained models. Since the ARDCW is built on
the weight database, it does not have restrictions in application on time-dependent data such as G W7 with
sequences of scasonal fluctuations in monitored data over different intervals of the year. However, presenting a
seasonal time dependent GWT model was beyond the scope of this paper.

An experimental application of the proposed ARDCW was applied on 244 measured GWTs from a
geoengineering project in Stockholm, Sweden. The 3-32-8-1 predictive DAVN topology, as the characterized
optimum model showed significant competence in comparison with MCED and OR. The results showed that duc
to the use of different topologics, the MCD can behave differently at training and inference time, while for
assured dropout creating a custom layer with predefined training parameters for regular dropout should be
employed.

Using the ARDCH, the estimated UQ boundaries with a 95% C/ were visualized and presented on the generated
3D predictive spatial pattern of subsurlace GWT data. This cost-ellective and adequately accurate tool can reflect
the potential risks associated with the distributed spatial aquifers, thus preventing water inrush, or facing
underground geo-structures.

The validity of most analyzed GWTs with respect to both engineering and societal challenges is limited in the
findings as it is often not included with the uncertainty assessment, This implies that uncertainty should be
estimated in many previously presented G 7T models, which are intended [or elficient decision support. Using
the created 3D predictive model, the geospatial distribution of GIWT and corresponding variations within
subsurface geo-formations can be pursued. This concern can significantly influence the design of underground
transport infrastructures for the city of Stockholm, where, in geo-engineering perspective the drainage of the
GWT through tunnclling can cause ground scttlements in the surrounding buildings. This phenomenon can be

particularly problematic in weak soil/rock formations and manifest as a defective injection process. Furthermore,
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the created model can decrease the risk of water inrush from excavation. By adding more geological data, the
ability to recognize swelling clayey material which is a major threat in tunnelling projects can also be achicved.
This implies that the presented GWT model is an indispensable tool for decision makers in urban development
projects (e.g. building detached homes, roads, railways and bridges), where substantial land surface processes

can be imposed.
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Abstract. Delineate and mapping the bedrock and overlaid deposits due to complex
spatial patterns, associated uncertainties and sparse data is a vital difficult task in geo-
10 engineering applications. The improperly maps of spatial subsurface bedrocks can
11 cause significant influence on costs and the risks of a project. In the past decades,
12 different geophysical techniques and geomathematical models commonly have been
13 used for subsurface imaging, but due to well recognized drawbacks such methods can
14 neither the only nor the optimum solutions. This motives to examine modern compu-
15 tational artificial intelligence-based models (AIM) to overcome the deficiencies and
16 underlying assumptions of previous methods. Moreover, approved abilities of AIM in
17 solving the complex problems as well as capacity to work with imprecise and differ-
18  ent types of data provide a powerful alternative.
19 Investigating the feasibility of AIM in prediction of 3D spatial distribution of subsur-
20 face bedrock in a large area in Stockholm, Sweden is the objective of this study. To
21 have flexibility and access to more opportunities, the modeling process using soil-

O 0 N WA

22 rock sounding borehole data comprising the geographical coordinates and ground
23 surface elevation was carried out in both C++ and Python. To develop the codes, an
24 algorithm using trial-error method based on randomized data into 65%, 25% and 15%
25 for training, testing and validation was designed and compiled. In this process 6 train-

26 ing algorithms and 6 activation functions subjected to different internal characteristics
27 were e¢xamined, The primary investigations using the caleulated root mean square
28  showed that the optimum model can have between 10 to 25 neurons. These neurons
29 further were managed into numerous topologies in different hidden layers to capture
30 the optimum models. All organized topologies were evaluated and ranked using dif-
31 ferent error metrics. According to ranked models, the 3-20-5-1 and 3-8-17-1 struc-
32 tures subjected to Quasi Newton and Nadam (Nesterov-accelerated Adaptive Mo-
33 ment) using tangent hyperbolic and PReLu (Parametric ReLU) were selected as opti-
34 mums.

35 The optimum models then were used for prediction of bedrock levels and supported
36 by the high resolution digital elevation surface data in the same study area. It was
37 observed that in situation with sparse dataset, the developed models efficiently can
38 provide much more accurate prediction than previously applied techniques such as
39 geostatistical approaches. This implies that the developed AIM due to remarkable
40 capacities and acceptable predictability level can decrease the residuals between the
41 predicted and measured data.

42

43 Keyword: Sweden, bedrock, artificial intelligence, optimum model, spatial distri-
44 bution
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1 Introduction & Scope of Work

The outcome of predictive geo-engineering models include uncertainties. Therefore, formal
frameworks are needed for the uncertainty quantification (UQ), to assess the reliability of
the models and reduce hesitancy in both computations and real world applications. In
prediction processes, the uncertainity is a combination of three main sources i.e. modeling
(describing the real system), numerical (mathematical equations) and data meaurements.
However, their influence on the predictions are not equal. Therefore, the UQ level is
important for identifying limitations, increase precision and avoid unwarranted conclusions.
Over the years, the computational efforts of UQ has been the subject of a prime concern in
predictive geo-engineering models (Abbaszadeh Shahri et al., 2020; Helton and Sallaberry,
2017). Accordingly, future forecasts of such models can be significantly affected due to
inherent uncertainties. In this study, the reliability of predicted bedrock levels for a large
area in Stockholm, Sweden, was evaluated using different UQ indices. Accordingly, such
UQ indices represent different ways of comparing the true and predicted value at the same
point. The process was carried out using a developed optimum artificial neural network
model on a dataset with 1967 geotechnical soil-rock soundings.

2 Methodology

Using UQ methods, the level of confidence for each measurement can be estimated. The
UQ then allows proper judgments on the quality of the experiments and thus facilitate
meaningful comparisons with other similar values or a theoretical prediction (Iman and
Helton, 1988). However, finding an ideal UQ depends on available computational resources
(Sacks et al., 1989). Statistically, a process is in control if most of its variation falls within a
certain range. The confidence interval (C7) is a computed range of observed data that
covers the true future populations of a predictive model, with a certain probability. It can
also show the stability of the estimates, where the wider the CI, the more instable the
estimate. Accordingly, the level of 95% means that 5% of the predicted value lies outside
the CI. The prediction interval (£I) shows the certain probability of an estimation of future
observation and is often used in regression analysis.

3 Research Outcomes



Referring to Figurel, the calculated error margins of C/ and P/ for training and validation
datasets imply that most of the predictions fall within these limits. The confidence in
experimental data then can be increased if the survey is repeated several times using the
same method.
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Figure 1. Estimated CT and PI for validation (A), and testing (B) dataset

The point(s) outside the limits indicates the presence of non-random variation which makes
the process statistically unstable (Deng et al., 2012). In under control process, there is a
probability of a point exceeding control limits i.e. false occurrence on average once every
(1/probability) observations. To estimate the total uncertainty of a measurement, the UQ
formaly is performed through statistical metrics. Analyzed results of the developed
optimum neural network model and then the employed metrics for UQ, showed the
importance of the standard deviation (o) of each experiment for both the measured and
predicted values, where the lower the ¢, the lower the uncertainty. This implies on more
confidence and thus higher reliability in the experiments. According to calculations, the
values of £ 2.8 m and £12 m were considered for CI and P/ as the uncertainty and error
bias in the measured data. Referring to achievements, validation step showed 20% and
1.1% progresses compared to the training data in CI and PJ respectively.
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Visualisering av bergtopografi
med artificiell intelligens
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Rumslig férdelning av djup till berggrunden (DTB) &r en viktig och
utmanande fraga i manga geotekniska tilldampningar. P4 grund av att DTB
associeras med sékerhet och ekonomi i jord- och bergkonstruktioner
kan generering av mer precisa modeller vara av avgérande betydelse.
Med hjalp av resultat frdn Jb-sonderingar fér ett infrastrukturprojekt i
Stockholm har vi skapat en optimerad visualiserad 3D -prediktiv DTB-
modell via en automatiserad artificiell intelligent datormetod (Al) och
jamfort den med den metod som ofta anvénds, det geostatistiska

verktyget Ordinary Kriging (OK).

Modellering av bergtopografi — En
geoteknisk utmaning

Underjordisk modellering blir alltmer en
nodvindig del av tredimensionell (3D)
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stadsplanering. For att skapa en informativ
och anvindbar modell under jordytan
miste olika typer av data kombineras.
Planerare och ingenjorer letar efter kun-
skap om platsen fér geologiska diskonti-
nuiteter och grinserna for l6sa sediment
samt deras geotekniska egenskaper. Dir-
for dr rumslig fordelning av djup till
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berggrunden (DTB, depth to bedrock)
av stort intresse for geoteknisk modelle-
ring och riskbedémning [1, 4]. Som ett
generellt intresse dr visualiserade DTB-
modeller viktiga verktyg for att beskriva
komplexa geologiska forhallandena. Detta
innebir att det r en utmanande uppgift
alt generera noggranna modeller som har
inverkan pd kostnaderna. och. siskerna i
geotekniska projekt [3].

Geotekniska sonderingar ger endast
punktbaserade data. Detta innebir att
osikerheten i prediktiva modeller dr sto-
ra pa grund av flera svirigheter sasom
begrinsad tillging till ett helt omrade,
kostnader fér undersokningar och av-
stand mellan sonderingar. Traditionellt
anvinder sadana forutsigelser ofta oli-
ka geostatistiska interpoleringstekniker
mellan  sonderingspunkterna. Resultat
fran geofysiska undersékningarkan ocksa
korreleras med geoteknisk information,
men jimfort med geotekniska son-

deringar kan dessa data inte bara vara
komplexa och tidskrivande utan ocl
ha logistiska problem. De bor dirfor
utfiras av experter som ar bekanta med

testmetoden. Dessa problem innebir att
kvalitén hos en genererad 3D DTB -
modell beror pa kvaliteten pa tillginglig
information om omradet, den tillimpade
metoden samt  korrelerade variabler,
Darfor dr det inte alltid klart vilken
metod som ger det mest dndamalsenliga
och korrekta resultatet.

Geoteknisk artificiell intelligens

Under de senaste dren har artificiell in-
telligens (AI) visat pa anmirkningsvirda
beriknings- och inlirningsméjligheter
for att hantera olika typer av komplexa
problem. Eftersom DTB-modellering be-
handlar olika osikerheter dr Al-tekniker
lémpliga alternativ for att 6vervinna be-
grinsningen och forenklingar hos de tra-
ditionella geostatistiska metoderna som
Kriging [2].

Med hinvisning till efterfragan pa
hégupplosta 3D-underjordsmodeller var
vi motiverade att ta itu med denna ut-
maning med hjilp av ett utvecklat auto-
matiserat Al-férfarande. Vivalde projektet
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Tvarforbindelsen i Stockholm som inklu-
derar 1968 jord-bergsonderingar (Jb-
sonderingar). Med hjilp av det utvecklade
automatiserade schemat visade den iden-
tifierade optimala modellen overligsen
prestanda och mer precis DTB-modell
jamfort med traditionell OK-teknik. Res-
ultaten paverkar méjligheten att optimera
antalet borrpunkter ndr man anvinder
utvecklade Al-modeller.

Det studerade omradet

Det studerade omradet omfattar en cir-
ka 5 km lang stricka av det 20 km paga-
ende NW-SE-motorvigsprojektet Tvir-
forbindelsen i Stockholm. Profilen for
denna motorvig korsar den befintliga
berggrunden som huvudsakligen bestar ay
sedimentira gnejser och metavulkaniska
bergarter samt pegmatitpassager. T denna
studie sammanstilldes 1968 stycken Jb-
sonderingar (figur I) i omradet och ran-
domiserades till data som delades upp
i 65, 20 och 15 procent fér att generera
trining-, testning- och validering av data.
Inom en del av det studerade omréidet
varierar berggrundsnivierna dramatiskt
och vi stotte dérfoér pa en utmaning pa
grund av begrinsat antal sonderingar.
Denna utmaning évervanns med hjilp av
ett intelligent kunskapsbaserat ramverk
[1]. En o6versikt déver den konstruerade
digitala hojdmodellen (DEM, digital ele-
vation model) for omradet visas i figur 1
och detta omrade med DEM anvandes for
bergrundsmodellering,

Utveckling av automatiserade metoder for
prediktiv Al

Ett neuralt nétverk dr ett artificiellt system
som bestar av virtuella abstraktioner av
neuronceller. Darfor ar Al ett forsok att
simulera en minsklig hjarnstruktur dar
datorn kommer att konfigurera pa ett
sadant sitt att man kan lira sig, replikera
procedurer och pd si sitt fatta beslut. Detta
innebir att efterlikning av den minskliga
hjarnan déir Al-tekniker anvinds for att
losa komplexa berikningsproblem. Den
senaste utvecklingen av systemanalyser
och de betydande pavisade fordelarna
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Figur 3: Resultaten for optimal topologi.

Resultatet av en automatiserad proce-
dir: med ke Borilinatoner oy byper
parametrar visade det minsta felet i en
modell med fyra lager med topologi 3-28-
12-1 (figur 3). I denna optimala topologi
visar 3 antalet indatavariabler (rumsliga
koordinater fér JB-sonderingar), 28 och
13 anger -antalet neuroner ;i tvi dolda
lager, och 1 uttrycker antalet utdata (den
férutspadda DBT).

jamfort med traditionella modellerings-
metoder har lett till kad anvindning
av olika Al -tekniker. Fér att fa den
optimala modellen utvecklades darfor
en automatiserad inldrningsprocess ge-
nom en iterativ procedur. Denna metod
som anvinder flera inbiddade interna
kapslade loopar kan automatiskt évervaka
en mingd olika hyperparametrar for
bade grunda och djupa neurala nitverk.
Den forenklade layouten av processen
presenteras i figur 2. For mer lisning
angaende Al rekommenderas [5].
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och visuali DTB-modell
Det finns en trend som gynnar an-
vindningen av 3D-modeller med moj
het att kombinera terringdata och flyg-
foton. Sadana modeller ger ett visuellt
perspektiv pa det aktuella omradet, vil-
ket mojliggor mer precisa tolkningar.
Beroende pa kvaliteten pa de data som
anvinds och tillvigagangssittet kan dock
noggrannheten och modellens korrekthet
variera nir det giller deras formaga att
férhindra konflikt med olika interpole-
ringsalgoritmer. Figur 4 visar resultaten
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Figur 2: Layout fiir den exckverade te Al -proceduren vid av den liserad
DTB -modellen.
Optimerad A/ R RMSE g
triining | testning | validering | triining | testning |validering
096 096 094 6 555 6.3
»
s 2
53
g3
] |
33
-2
=

av den automatiserade processen for ska-
pandet av den visualiserade 3D -modellen
av studicomradet med hjilp av Jb -
sonderingarna.

Jamforelsen mellan AT och OK visade
pa mer precisa uppskattningar med AT
och dirmed hogre forutsigbarhet dn OK.
I figur5 presenteras determinationsko-
efficienten (R2) och skillnader mellan de
forutsagda och uppmitta virdena. Efter-
som hogre virden pa R’ och mindre
skillnader ger Al-modellen med R*=0,94
en betydligt bittre forutsigbarhet in OK
med R’= 0,84. Tabell | visar summering
av skillnader mellan de forvintade
och  verkliga  bergytenivier. ~Den
genomsnittliga skillnaden/métpunktér 7,4
m for OK och 4,3 m for AL vilket indikerar
att det forutsagda bergytenivierna ligger
narmare det verkliga bergnivan for AL
modellering. Det visar att Al har 42
procent forbittring &n OK genom att titta
pi skillnaderna mellan férutsagda och
verkliga virden.
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eft automatiserat Al-system som visade
en signifikant forbittring jamfért med
traditionell geostatistisk OK-teknik. Al
har potential att medfora bittre for-
utsdttningar for industrin eftersom den
kan hantera stora mingder data (big
data), presentera mer precisa resultat
och édven kunna uppdateras i realtid.
Sadana egenskaper tillhandahaller ett
kostnadseffektivt verktyg for geo-ingen-
jorer i sitt dagliga arbete. Denna friga
kan spela en betydande roll vid design
av till exempel erforderlig palning och
jordforstarkning. De tolkade resultaten
indikerar att utvecklade Al-modeller ar
genomforbara, kostnadseffektiva och mer
noggranna verktyg fér att anvéndas for
rumsliga forutsagelser av DTB. B
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Abstract

The interest in creating high-resolution 3D subsurface geo-models through multisource retrieved data i.e.,
borehole, geophysical techniques, geological maps, and rock properties for emergency responses is progressively
increasing. However, dedicating accurate, meaningful, and thus interpretable 3D views from integrated such
heterogeneous nonlinear data require developing new methodology for convenient post-modeling analysis.
Therefore, in the current paper a hybrid automated deep learning-based approach for 3D modeling of subsurface
geological bedrock using multisource data is proposed. The uncertainty was quantified using a state-of-the-art
novel ensemble randomly automated deactivating process implanted on the stored weight database. The
applicability of automated process in capturing the optimum topology with emphasizing on processing flow for
description and analysis of 3D subsurface geo-modelling is then validated through the laser scanned bedrock
level data in Sweden. In compared to intelligent quantile regression and traditional geostatistical interpolation
algorithms, the accuracy of proposed hybrid approach showed high competence for visualize and post-analyze
the 3D subsurface model. Due to using integrated multi-source data, the presented approach and created 3D
model can be a representative reconcile of the geoengineering context.

Keywords: 3D subsurface bedrock, deep learning, automated process, uncertainty, Sweden

1. Introduction

In geoengineering practice, each drilled borehole is a type of geological diagram that can be used for
stratigraphical description such as stratum thickness or lithology characteristics. Accordingly, the retrieved
information from a series of boreholes in a specified area can lead to analysis and decision-making of subsurface
conditions and mapping for various underground projects. Furthermore, the collected borehole data due to
diverse sources need to be unified according to defined standards in each country. However, due to inability of
borehole data in explaining the laterally distribution (Mayoraz et al., 1992) as well as significant increase of the
volume of the datasets even if after unification, the result of geological model often conflicts with geological
knowledge that requires for continually updating in the later stage (Zhang et al., 2020). Three-dimensional (3D)
modeling mathematically expresses the digital coordinate-based representation of any surface of an object
through specialized software or developed codes. Accordingly, the capacity of digital views of objects
practically have been implemented in many site characterizations through subsurface formations and
corresponding associated features in geoengineering applications (Houlding, 1994; Hack et al., 2006; Dong et
al., 2015; Abbaszadeh Shahri et al., 2021a). Therefore, spatial distribution and maybe interrelationships of
subsurface objects can intuitively be reflected in 3D perspective based on unified borehole and other surveyed
datasets. This implies on great advantages of 3D geo-models in subsurface monitoring and thus corresponding
associated attributed information for underground utilization and urban environment. Such computer models for
the subsurface applications can transmit the represented objective to the visualizer with superior level of detail
tied with in compare with 2D. However, 3D geospatial information always has been a challenge due to a variety
of data, resolutions and required details (Lee and Zlatanova, 2007). In geoengineering practices, extension of a
specified geological unit (e.g., rocks, lithological strata, mineralized area, hazard and risk, foundation design,
tunnel routing, building, and planning) commonly is determined through borehole data on 2D cross-sections. To
conceptualize the spatial patterns of subsurface characteristics, 2D geo-models need to be developed in 3D
(Anderson et al., 2015; Mallet, 2008) complemented using supplementary test data, where the more information,
the more accurate inference result (Giinther, 2003; Perrin et al., 2005; Do Couto et al., 2014; Wu et al., 2015;



Thornton et al., 2018; Abbaszadeh Shahri et al., 2020, 2021a, b). Nowadays, with the advent of huge of
amount of produced geo data such 3D models can be used as an integrated carrier of geoengineering and
environmental big data.

Interpretation of sparse laterally distributed parameter in a geo-model from vertically constrained borehole data
is a difficult obstacle (Mayoraz et al., 1992). Therefore, integrating the different qualified borehole data with
numerical algorithms (Apel, 2006; Mallet, 1992) or cognitive interpretative approaches (Caumon et al., 2009;
Schaaf et al., 2020; Ghaderi et al., 2019; Zhan et al., 2020) commonly are used to interpolate between
observational points for the incorporation of expert geological knowledge. In this view, 3D interpolation of
planar meshes (Xu and Tian, 2009), surface mesh generation (Frank et al., 2007) and triangulation algorithms
(Chew, 1989) are considered as the most appropriate alternatives to handle discrete bore hole data (Abbaszadeh
Shahri et al., 2020). However, applicability of these methods due to several challenging interactive human-
computer operations as well as time consuming process and maybe inapplicability in handling big data is still
essential in the current geoengineering modeling methods (e.g. Turner, 2006; Niu et al., 2017; Kumar et al.,
2019; Lakshmanan, 2012).

To tackle the difficulty of big data (Chen and Lin, 2014), application of skilled artificial intelligence techniques
(AIT) in terms of shallow and deep neural learning networks (SNLNs and DNLN5s), machine learning (ML),
hybrid models and evolutionary algorithms have been emerged as a powerful tool in across all geoengineering
problems to describe physically meaningful relationships within geoscientific data (e.g., Karpatne et al., 2018;
Spina, 2019; Abbaszadeh Shahri et al., 2021a, b).The DNLNs due to characterized features such as creating
transferable solutions and learnability from high-level data attributes (LeCun et al., 2015; Schmidhuber, 2015)
are one of the most used systems for modeling (Toms et al., 2020; Abbaszadeh Shahri et al., 2020 and 2021a).
Accordingly, the generated 3D visualized models using DNLN due to analytical capabilities can dedicate higher
resolution, more flexible and vigorous tool than GIS and CAD systems (Mallet, 1992). This implies that in the
current digital era developing scientific conceptual and 3D quantitative perspective of subsurface features for
geoengineering applications through DNLN-based techniques are prime of concerns. However, there is no
straight-forward answer on amount of actual enough data for training the system. The reason is referred to two-
folded task of the DNLN, as it needs to learn about the domain through the training algorithm from scratch and
thus many parameters to tune (Abbaszadeh Shahri et al., 202, 2021a). Therefore, the robustness of DNLN-based
predictive models should be evaluated in terms of different accuracy performance criteria and uncertainty
quantification (UQ) analysis (Morgan and Henrion, 1990; Yan et al., 2015).

Europe due the dense urbanization and variety of geological conditions needs for exploring sustainable use and
management information of the subsurface in urban planning and development (Mielby et al., 2016). To
overcome on challenges associated with sustainable cities and environmental regulations, the appropriate use of
the subsurface in response to technology and socioeconomic demands have been highlighted (Athanasopoulou et
al., 2019; Hooimeijer and Maring, 2018). From geoengineering point of view, depth to bedrock (DTB)
corresponding to the thickness of the sediments above the bedrock is a crucial factor for the proper subsurface
utilizing. In Sweden due to pursuing the £U rules and abundant of created infrastructures (e.g. transport tunnels,
roads, railways), the DTB is an important concern, where geotechnical knowledge on it can provide critical
insights into the influence of the stability of the structures and transport of contaminants through gradient on
bedrock surfaces (Abbaszadeh Shahri et al., 2021b). Therefore, producing accurate 3D visualized spatial D7B
model not only facilitates the interpretation of sparse geotechnical measurements but also provide momentous
tool for identifying the optimum solutions and risk assessment (e.g., Gomes et al., 2016; Wei et al., 2016;
Ghaderi et al., 2019; Abbaszadeh Shahri et al., 2021a, b; Yan et al., 2020). However, in geoengineering projects
producing high resolution 3D spatial D7B predictive model due to incorporated uncertainties with geotechnical-
based limitations (e.g., access to an entire area, cost, distance between the soundings) not only requires for
different combination of data types but also is a critical task (Gomes et al., 2016; Wei et al., 2016; Abbaszasdeh
Shahri et al., 2020, 2021a).

Traditionally, the produced geoengineering models reflecting the D7B have been generated by means of
geostatistical techniques. These models due to the lack of computational system adopted for big geo-data and
limited graphical power in complex problems often have been performed in less complex and small-scale areas.
This point shows why developing modern computational 4/7-based scheme for producing a more accurate and
high-resolution 3D visualized subsurface model is highly motivated. Such demand with the advent of 41T



technology and code developing can provide powerful new application to the requirements of the geo-engineers
to address the modeling obstacles.

The interest in developing 3D models (buildings or undergrounds) and geospatial data analysis in emergency
management systems for field workers and decision makers is progressively increasing. Accordingly, in the
current paper a developed automated DNLN procedure for generating the 3D spatial predictive of D7B for
Sweden as a necessary part of 3D urban planning is addressed. This model was created using geolocation of 644
datasets of different soil-rock soundings and geophysical investigations. In addition of using the randomized
validation data, a number of 75715 scanned rock surface datasets also were separately fed for predictability
assessment. Detailed analyses in compare with quantile regression (OR) (Bremnes, 2004) and geostatistical
ordinary kriging (OK) (Wackernagel, 1995) showed that the proposed automating approach and corresponding
optimum DNLN topology properly can dedicate a high-resolution 3D spatial predictive subsurface D7B map.
The analyzed UQ also indicated competitive performance in using the optimum topology led to superior
performance in compare with OK and QOR.

2. Study area and data source

The study area is located in the south-west of Sweden, close to Gothenburg city. The geotechnical data used in
this study is collected along highway E20 between Bélinge and Vargéarda. Swedish transport administration is
planning to build a new highway close to the old E20 by considering the currently problems with speed, traffic
safety and environment influences. In the western part close to Bélinge, the proposed highway crosses rock
outcrops, moraine, glacial clay, glacial deposits, and swell sediments. The bedrock along the planned road
consists mainly of gneiss and it has a higher content of dark minerals such as amphibole and biotite. Pegmatite, a
granitic coursed-grained rock is found along almost the whole stretching of road route. The bedrock is general
heterogeneous and complex compound. But at the end of the road route the bedrock becomes more homogenous
and consists mostly of the so-called Vargarda granite (Asander, 2015). The fracture zones in the gneiss in this
area is generally in east-west direction. However, close to Bélinge the fracture zones are in a northwest-southeast
direction and close to Vérgarda they are more in northeast-southwest direction. The fracture planes are general
dipping to the south which can possibly cause stability problem if rock cuttings are performed (Asander, 2015).
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Figure 1. Location of project area in Stockholm with the location of acquired geotechnical data (in red)

superimposed on google earth image

3. Model development process

3.1. Overview of DNLN structure

The concept of A7 is a simplified imitative learnable layout of human brain structure that aims to increase the
computational power through the embedded connective processing elements. Referring to approved advantages
of Al-based systems over traditional modelling approaches, they are largely growing in computer vision of



geoengineering applications. DNLN is a subcategory of A7 that without being explicitly will scan the data to
search combinable features for faster learning. This ability implies on great performance of DNLN with
unstructured data (different formats such as texts, pictures, pdf, ...) as well as exploring new complex features
that human can miss and thus more capacity over ML to execute feature engineering (LeCun et al., 2015). Such
process significantly will save the time. Accordingly, the analysis of UQ in DNLN can be described in the
context of input variabilities, assumptions and approximations, measurement errors as well as sparse and
imprecise data (Yan et al., 2015). However, all sources of uncertainty using these techniques for value-based
judgements may not be quantifiable (Morgan and Henrion, 1990).
As presented in Figure2, in a fully connected configuration of DNLN the output of the j* neuron in the & hidden
layer at the 7™ iteration, ok (t), subjected to activation function, £, is defined as:

of (0) = F(S " whixf ' (@O +bf) G <m0 M
Where; x; is the i signal input with a connective weight of wy to the /" neuron in the A hidden layer. nx shows the
number of neurons in the A" layer, and b}‘ denotes the bias which shifts the summed signals received from the

neuron.

Figure 2. Simple configuration of DNLN architecture

The weights and biases are then updated using corresponding error of the i neuron in the kth hidden layers, p¥ (t),
to minimize the prediction error by:

Awhi () =y [f (xE@) ol O (E = D] of 1O + adwli(t = 1) (k=12,..m—-1) ()

BbE(O) = 1,1 (xF(©) 5 (OW] (£ — D] + @, Abl (£ — 1) 6)
Where; f (xlk (t)) is the first derivative of f (xlk (t)) with respect to x(t). a,, and a; express the momentum
constants that determine the influence of the past parameter changes on the current direction of movement in the
parameter space, and a,, usually varies within [0.1, 1] intervals and is used to avoid instability in the updating
procedure. n,, and 1, represent the learning rates.
the total error for the entire network, E(f), prediction error, £(t), and the outcome of the /th neuron in the mth
output layer, y;, is then calculated using the updated weight by:

EQ® =13, (40 - of ) @
) =T Wi (< n,) ®)
0 =y -9 ©

Where; dj() denotes the desired output of neuron j at the /" iteration. y and n, represent the actual output and the
number of neurons in the output layer respectively.

3.2. Configuring the hybrid automated model monitoring

In the current paper as presented in Figure 3, a hybrid automated approach comprising two blocks and several
embedded inner nested loops accompanying with switch cases for subsurface 3D modelling was developed.
Using block A (Figure3) the procedure monitors variety of combined internal hyper parameters as presented in
Table (1). This was executed because in DNLN the need for adequate computing power and data for learning
should be considered (Bengio, 2009). Such integrated components then allow system for monitoring different



combinations of internal hyper parameters not only makes learning faster but also minimize to get stuck in local
minima or overfitting problems (Abbaszadeh Shahri et al., 2020). To prevent the early convergence, a two-step
termination criterion was considered in which if the root mean square error (RMSE) as the priority didn’t
achieve then the number of iterations (set to 1000) is replaced. Accordingly, numerous captured shallow and
DNLN even with similar topology but different hyperparameters can assist to improve the generalization of
selected model for new examples (Abbaszadeh Shahri et al. 2021b; Kriegeskorte and Golan, 2019). To control
the stability of the achieved topology, the UQ was estimated using a proposed state-of-the-art ensemble-based
automated randomly deactivated weight database (ARDCW) approach as presented in block B (Figure3)
(Abbaszadeh Shahri et al., 2021¢). Deactivating approach solely is applied on the weight database of the
optimum topology. Subsequently, the model automatically is retrained using switched off weight components to
monitor the variation of predicted output subjected to different scenarios. Therefore, the challenges of
computational costs for multiple training of complex topologies through different optimizers are overcome
(Abbaszadeh Shahri et al., 2021c¢).
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Figure 3. The layout of proposed hybrid automated approach to capture the optimum topology and UQ analysis

Table (1). Used hyperparameters to monitor the optimum model

Training algorithm (74) Activation function (4F) Maximum number of hidden Maximum number of used
layers (user defined) neurons (user defined)
QP, CGD, AM, ON, LM, SGD Sig, HyT, Lin, Relu, SS 3 35

n: 0.7 with a step size domain within [0.001,1.000] interval

Note=>» QP: Quick propagation; CGD: Conjugate gradient descent; AM: Adaptive momentum; LM: Levenberg-Marqurdt; ON: Quasi
Newton; SGD: Stochastic gradient descent; Sig: Sigmoid; Hyt: Hyperbolic tangent; Lin: Linear; Relu: Rectified linear unit; SS:
Softsign

3.3. Results and created 3D model

Considering the combination of employed hyperparameters, the optimum model was identified among more than
2000 monitored and ranked topologies with different internal characteristics. A series of the results subjected to
implemented hyper parameters (Table 1) in terms of the variation of minimum RMSE for training stage are
shown in Figure 4a. Using this process, the risk of overfitting, early convergence and get stuck in local minima



will be minimized because even similar topologies but with different hyperparameters are also examined. The
overtraining problem also is detected when no improvements in the accuracy after a certain number of epochs
can be observed (Abbaszadeh Shahri et al., 2021d). Furthermore, in automating procedure the best results among
three runs of each model are saved. Referring to Figure 4a, the DNLN topology with structure of 3-20-15-1
subjected to ON and Hyt can be selected as optimal. Subsequently, the predictability of achieved topology using
the randomized datasets is reflected in Figure 4(b-d).
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Creating and simulation of the 3D model using A/7s is an important priority for subsurface geoengineering
purposes (e.g., Zhou C et al., 2019; Zhang et al., 2020; Abbaszadeh Shahri et al., 2020, 2021b). This is because
the traditional method relies on the knowledge and experiences of experts in the selection of assumptions,
parameters, and data interpolation methods which are subjective and limited (Randle et al., 2019).

In Figure5, the step-by-step 3D modeling of the subsurface spatial DTB distribution for the study area in
compare with the true scanned data is reflected. The rock outcrops then can be identified through the overlaid
generated ground surface and spatial scanned D7B leading to a high resolution predictive 3D subsurface model
with an adequate accuracy in geoengineering projects. In Figure5d, the result of analyzed UQ in terms of the
predicted error using the ARDCW (Abbaszadeh Shahri et al., 202 1c¢) for the achieved optimum DNLN topology
is presented, where the higher errors in predicted D7B depict greater uncertainties at data points.
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FigureS. The created 3D model of study area comprising the (a) ground surface, (b, ¢) incorporated the
lateral distribution of scanned and predicted DTB, (d, e) estimated UQ using ARDCW accompanying with
the scanned and predicted DTB using automating system

4. Discussion and validation

3D digital models provide more facilitates compared to traditional blueprints, as they can serve a way to improve
communication between engineers, constructors, and their clients. Such models can play significant role when
the project needs to undergo bidding and cost evaluation to list down all needed resources. This implies that for
the success of a geoengineering project 3D modeling due to ability in capturing the complexities of subsurface
characteristics, improving the visualization, and thus assisting for better analysis of designs are important tools

Furthermore, 3D models can convey the use and the advantages of a designed project easier especially to those
who have little knowledge of construction and engineering

These descriptions show that the field practicability of each generated 3D model before use should carefully be
evaluated in terms of different accuracy performance metrics. In this study the discussion on generated 3D model
were presented through comparison of different analytical and evidential metrics with OR and traditional
geostatistical ordinary kriging (OK)



4.1. Precision performance

Among the traditional geostatistical interpolation algorithms, the OK can serve spatial estimation when a
variogram is known (Wackernagel, 1995). However, OK due to using the interpolation can only predict the D7B
values within the range of observations while the OR and DNLN because of regression and considering the
minimal squared error are able to predict even in outside of the tabulated domain. In mathematical point of view,
" order polynomial for (n+1) DTB points can be obtained which passes exactly through all (n+1) data. This
is the main reason why in training process the OK subjected to different variogram functions showed high R’
(Table 2). Accordingly, during the training process the regression may not be as accurate as interpolated DTB
within the observed domain but provide much better predictions in the range of below and beyond the
observations. This reasonably describes why R’ of predicted data in OK significantly is varied (Table 2).
Moreover, since OK statistically contains several parameters that can be justified by the data, the achieved
results can be referred to overfitting (Everitt and Skrondal, 2010; Christian and Griffiths, 2017) while variability
of variagram parameters made different predictions on the same dataset. This implies that the OK subjected to
big data does not generalize well, and the predicted new values provide closely or exactly response to a
particular set of data.

ann

Table (2). Summary of the OK results subjected to 8 to 14 lags and different variogram functions

Variogram function R? validation R? prediction
linear [0.92, 0.97] [0.73, 0.81]
power [0.89, 0.96] [0.23,0.78]

Gaussian [0.88, 0.90] [0.08,0.23]
spherical [0.91,0.96] [0.76, 0.80]
exponential [0.88, 0.99] [0.79, 0.82]

Moreover, for proper evaluation the model never should be trained with the entire dataset because of too much
learning and saturation (Burnham and Anderson, 2002; Tetko et al., 1995). The results for such training lead to
capture the noise in the data in addition to the signal and thus can cause wild fluctuations in the model that does
not represent the true trend (Abbaszadeh Shahri et al., 2020). The predictability of applied models in terms of
scatter plots is given in Figure6.
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The predictive models analytically are dependent to the precision and accuracy of applied techniques. This
implies that the acceptability of implemented method can therefore be judged on the sizes of the observed errors
relative to a defined total allowable error (74E) (Lakshmikantham and Sen, 2005). According to Figure7 and
using the standard deviation (SD) of scanned D7B, a value of 6.811 for the TAE for the applied model is
achieved. Considering the SD of each model in predicted DTB, values of 6.07, 5.40 and 6.07 corresponding to
OR, OK and DNLN is calculated. Therefore, in compare with the calculated residuals (Figure 6d), the OK has
exceeded from the TAE which can be interpret as instability of this model in handling the big data. The precision
of TAE then was supported using SD of calculate residuals with values of 1.15, 1.45 and 0.98 for OR, OK and
optimum DNLN respectively.
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True value
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Figure7. Defining the TAE (SD: standard deviation, SE: standard error)

According to Akaike’s information criteria (4/C) (Akaike, 1970) that penalizes appended terms to a model,
additional variables that reduces RMSE and increases R’ are not appropriate to help guide the model choice. The
goal is to find the model that minimizes 4/C and for the regression can be calculated as:



AIC = 2P +nlog (%7)
Where; P is the number of variables, n denotes the number of records and the models with £ more extra variables
are penalized by 2k. RSS as the residual sum of squares for OK, QR and optimum DNLN are 160000, 110899.5
and 81984.45 respectively. In this point of view the second term of the 4/C for OK, OR and optimum DNLN
models stand for 24602.68, 12549.58 and 2615.91 respectively. Therefore, the high achieved R’ and thus low
RMSE in training and validation of OK (Table 3) cannot lead for better performance than QR and optimum
DNLN.

4.2. Statistical error analysis

In geoengineering purposes statistical analysis is an essential tool for the reliable interpretation of experimental
results. Furthermore, the growing importance of decisions and opinions based on data can pivotally assess the
quality of analyses and thus statistical error metrics can be used to decrease the decision risks. The results of the
generated 3D models in terms of mean absolute percentage error (MAPE), variance account for (VAF), index of
agreement (14), general standard deviation (GSD), coefficient of determination (R?), RMSE and difference ratio
(DR) are reflected in Table (3). Accordingly, the model with lower MAPE, DR, GSD, and RMSE as well as
higher values of VAF, 14 and R indicate for better performance.

Table (3). Applied statistical error criteria to evaluate and compare the employed models

Criteria Equation Optimum DNLN QR OK
VL Pred VL Pred VL Pred
MAPE 1 [ pi-o 1.20 0.8 1.7 0.8 34 12
= |;| x 100
n t;
1=1
RMSE N 1.95 1.033 3.206 1.19 447 1.69
1 100
n X Z[(Pt —0)?]| x 5
=1
var(p; — o; . . . . .
VAF [1 _ (p; 1)] % 100 0.98 0.90 0.93 0.85 0.85 0.46
var(p;)
GSD RMSE 0.0183 0.0096 0.0299 0.011 0.042 0.016
D
DR E 1.001 0.996 1.005 1.003  1.001  1.000
a,
1A 1 Yialpi — ol 0.99 0.97 0.98 096 097 090
Xiti(pi — o] + loi — 8,])
R? _ Var (model error) 0.97 0.91 0.95 0.88 090 082
Var (o;)

4.3. Comparing 3D visualized models

In geoengineering applications, the interest of 3D models for emergency management responses is progressively
increasing. Employing 3D models can help the geoengineers to determine early on the process all the necessary
material involved for the construction of the project. Referring to high computational cost in available traditional
modelling techniques, application of modern systems such as DNLN are motivated to represent and analyze 3D
geospatial data for geoengineers, field workers and decision makers (Abbaszadeh Shahri et al., 2021b).
Accordingly, in subsurface projects adding different level of stratigraphic or geological details are of great
demand in application allowing visual representation of the interested geoengineering features (e.g. Mayoraz et
al. 1992; Lemon and Jones 2003; Frank et al., 2007; Caumon et al., 2009). Such 3D predictive geospatial models
can show the digitized geometric or topological objects based on the available featured factors leading to capture
the complexities of buildings and infrastructures that closely resemble the view of the finished project.
Accordingly, using 3D models the geoengineers can determine how to design the project based on the involved
natural and man-made aspects which leads for more proper structural element adoption and thus making safer
and stronger projects. An appropriate tuned DNLN can easily be adopted with new data to improve the
diagnostic performance and computer vision modifications. It also can be supplied with future acquired data to
reflect more details of the subsurface features. In this point of view, the predictability of applied models in



creating spatial 3D views supplemented by residual contours in the outlines of the area subjected to 75715
scanned DTB were compared and presented in Figure 8.
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Figure 8. 3D visualizing of applied methods by incorporating the predictive models and scanned DTB data for
(a) optimum DNLN, (b) OR, and (¢) OK



4.4.2. Estimated UQ intervals in scanned D7B

Despite the various 3D suggested advanced analysis methods in geoengineering problems (e.g., Murdie et al.,
2015; Zhang et al., 2021; Abbaszadeh Shahri et al., 2021c¢), the analyzed UQ due to used assumptions and
propagated error in applied computational modelling technique can provide significant differences. Moreover,
the problem associated with the generalization from a single study, difficulties in obtaining appropriate
measures, and issues related to identifying the most accuracy for model representation should be considered
(Abbaszadeh Shahri et al., 2021c¢). In this context, prediction intervals (P[) provide an indicator for the UQ of
individual estimation. The PI has advantages over point estimates because of considering the variability in the
data to provide a “reasonable” range of values for an observation (Chatfield, 1993; Meade and Islam, 1995).
Therefore, PI must account for both the uncertainty in predicting the population mean, plus the random variation
of the individual values (Lawless and Fredette, 2005), and thus it is always wider than a confidence interval. This
implies that when the statistics cannot be employed to explain the future data, the UQ for the upcoming
observations can be estimated using P/ based on known populations of data. One of the main advantages of
using P/ is that it gives a range of likely weights and thus the modeler can have a sense of how accurate the
predicted weight is likely to be (Hastie et al., 2001). In Figure 9, the estimated UQ intervals in terms of the level
of 95% PIusing ARDCW-DNLN, QR and OK for the scanned D7B area are presented. The distribution of
classified UQ intervals lead to identify the sub-areas with higher uncertainties in which for reduction the need for
more data and applicability of its corresponding in-situ test are highlighted. According to calculated P/, the
ARDCW-DNLN with estimated UQ within [0.6, 5.2] showed narrower interval than OK and QR that depicts
more concise results and thus higher accuracy. This implies that the bias and discrepancy of the OK, OR, and
ARDCW-DNLN can be interpreted through the comparison of the estimated UQ in terms of P/.
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Concluding remarks

Referring to growing field of 3D modelling, an advanced predictive hybrid automated DNLN for visualization
and UQ analysis using multi source geo-data in Sweden was proposed and developed. The presented automated
DNLN framework can highly be benefited for subsurface geo-engineering applications through incorporating the
accurate predictive spatial DTB with geological and geomechanical features. There different models using



proposed automated DNLN framework, OR and OK subjected to 65% of randomized 644 multisource datasets
were trained. The predictability of captured optimum DNLN topology with structure of 3-20-15-1 then was
compared with OR and OK using 75715 scanned DTB to provide better interpretation and easy convenient for
post-modeling analysis. To evaluate the precision of applied models, the calculated TAE was supplemented by
SD of calculate residuals. It was observed that the residual of OK in compare with the calculated 74E in
predicted DTB is exceeded which can be referred to instability of this model in handling the big data. In a
mathematical point view the reason for high R’ in training the OK and then significant variation in prediction of
big data were discussed and concluded that this traditional interpolation geostatical method cannot generalize
well in predicting of the big data. Referring to 4/C in penalizing appended terms to a model, it was approved that
the high achieved R’ and thus low RMSE in training and validation of OK cannot lead for better performance
than QR and optimum DNLN. Comparison of the applied models using different statistical metrics also showed
DNLN can provide better results than QR and OK. Provided maps subjected to 95% P! for the scanned DT7B
revealed the narrower UQ estimation using ARDCW-DNLN within [0.6, 5.2] depicting more precise results and
thus higher accuracy.

The presented 3D model can improve the visualization of geoengineers for better analyzing of crucial structural
elements and thus better insights into the project based on the involved natural and man-made aspects leading to
safer design stages. Using such digital but flexible model enable them to add the coordinates of the infrastructure
to modify the inconsistencies of the plan without requiring to blueprints. This issue will give them the
opportunity for dedicating more applicable solution to fix the difficulties in a right way. Using 3D models also
enhance the bidding process and allow contractors to benefit from the automated intelligent modeling to yield
higher quality and less expensive construction. The results approved those technological advancements using
DNLN in geoengineering sectors dedicate easier task accomplishment and thus better outcomes. Although,
DNLN still needs to overcome a few challenges before becoming a more versatile tool in real-world and thus
geoengineering applications, but it is expected for large making investments to further technology in solving
more complex problems in the future. The adopted 3D models not only speeds up the design process but also
enable geoenginners and decision makers play around with different ideas and identify potential design problems
before they become actual issues. This implies that 3D modeling in construction can put all the phases together
and dedicate a real view of the finished project. Swedish agencies also can provide 3D design data to potential
bidders, or contractors to develop their own models for use during construction.
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