Rock and groundwater surface modelling using
artificial intelligence

Modellering av berg- och grundvattenniaver med

artificiell intelligens

@ )
g}““égKTH%%g Chunling Shan TYRENS

o

'::E VETENSKAP

9 OCH KONST %%

- Abbas Abbaszadeh Shahri
Stefan Larsson G Branschsamverkan i Grunden

BeFo
W

BeFo Report 415, 2022




Scientific achievements

1. Spatial distribution modelling of subsurface bedrock using a developed automated intelligence deep learning
procedure: A case study in Sweden (2021). Journal of Rock Mechanics and Geotechnical Engineering,
13(6):1300-1310, https://doi.org/10.1016/j.jrmge.2021.07.006.

2. Anew approach to uncertainty analysis using automated predictive deep learning in groundwater (2022).
Accepted by Natural Resources Research.
3. Artificial intelligence-based models to predict the spatial bedrock levels for geoengineering application
(2020). Proc. 3RP Conference of the Arabian Journal of Geosciences (CAJG), Springer
Nature.

4. Uncertainty analysis of an optimum predictive neural network model in subsurface bedrock level modelling
(2021). In proc. 3" International Symposium on Machine Learning and Big Data in Geoscience. Machine
Learning & Risk Assessment in Geoengineering, MLRA 2021, 48-52, Wroclaw, Poland.

5. Visualisering av bergtopografi med artificiell intelligens (2022). Bygg & Teknik, 114(1):44-46.
6. 3D modeling and uncertainty analysis of DTB using hybrid automated deep learning. First drafft.
BeFo

I Befo Report 415, 2022



https://doi.org/10.1016/j.jrmge.2021.07.006

Background

Understanding the subsurface of our earth is important for many
different applications within the geosciences. In Sweden the soil-rock
soundings are usually carried out to get the bedrock level. It is an
accurate method to determine the exact level of the bedrock, but the
disadvantage is the high cost of drilling, besides it is a time-consuming
process and only gives the bedrock level at sparse points. To estimate
the depth of the bedrock at unsampled locations, interpolation and
extrapolation is often needed.

Over the past several decades, the use of groundwater modelling has
increased for better evaluating the complexities inherent in
hydrogeological calculations. Information required for groundwater
modelling is for example elevation of soil and bedrock layers and
groundwater level. This data is usually collected in a limited number of
sample points, both due to practical and economic reasons. In order to
approximate values in unknown points, known values in measured
sample points can be interpolated over the study area.

In recent years, artificial intelligence (Al) techniques have shown
remarkable computational and learning capabilities in addressing
geotechnical problems. As depth to bedrock (DTB) and groundwater
table (GWT) modelling deals with various uncertainties, the
subcategories of Al such as machine learning, neural networks,
evolutionary computational and deep learning techniques are
appropriate alternatives to overcome the limitation and simplifications.
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Aims
Automatically analyze and model different types of
geo-data including the geotechnical sounding,
geophysical and groundwater level data to study the

spatial distribution of bedrock and groundwater
surfaces with artificial intelligence

Estimate the uncertainties of estimated groundwater
and bedrock levels

Compare the Al modelling method with traditional
interpolation method such as geostatistical method
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Methodology

Deep learning is part of the broader family of machine learning
methods based on artificial neural networks. It attempts to mimic
the human brain and enables systems to cluster data and make
predictions with high accuracy. In this study, the prediction of
deep learning is used through all the studies to predict bedrock
levels and groundwater levels at unsampled points. The input
layers contain 3 variables: X (northing), Y (Easting), Z (Ground
surface level). We developed an automated process with ability in
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Results
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Figure to the right shows the difference (true —
predicted values) comparison of Al and OK methods.
It is observed that OK has higher differences at more
places than Al.
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The difference plot between the predicted/estimated bedrock
levels and the true bedrock levels

Table to the left shows the summary of the differences between predicted
and scanned true values for 45667 points. The Total Absolute Difference is
the sum of the absolute difference of each point and the total absolute
difference of Al is smaller than OK. The Average Difference/point is the
total absolute difference divided by total number of points (45667). The Al
has lower value than OK. The Improvement from OK column shows how
much better the predicted bedrock surfaces of Al than OK.



Figure to the right shows the groundwater table (GWT) in
color and the 95% uncertainty intervals estimated for the
studied area. It provides the distribution of different
uncertainty levels and gives indication of the reason for
high uncertainties, e.g., if they are coming from the lack of
observed data or from the sudden big changes in the
groundwater levels. The location of the boreholes and the
levels of groundwater can be observed from the color
plot. As we see that at a few areas the uncertainties are ~
50 meters. This is due to the lack of data points and
sudden GWT changes (up to 40 meters level difference
between adjacent boreholes). This map can help in
planning for future data collection and borehole drilling
locations to reduce the high uncertainties in estimating
the groundwater surface.
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Color map of the measured GWT data (left) and estimated uncertainty
intervals using the measured GWT data (black dots) for a small part of
the project area (right).

A 3D view of the estimated groundwater surface
(brown, middle) for the study area together with
the upper (yellow) and lower (light blue)
boundaries.
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Summary and Conclusions

« Deep learning was applied to model, analyse and produce the 3D spatial distribution of the depth to
bedrock (DTB) and groundwater table (GWT) surfaces in Stockholm, Sweden and at the same time
evaluate the uncertainties.

« The comparison between Al deep learning and OK on DTB modelling shows that deep learning can
generate a surface that is closer to the true surface. The uncertainty quantification by deep learning also
shows superior performance, better estimation of uncertainties and covers more true values than the
quantified uncertainty from OK.

« The achieved outcomes and interpreted results indicate that the developed Al models are feasible, cost-
effective, economic and sufficiently accurate to be applied for geospatial DTB and GWT surface
predictions. The automated deep learning modelling approach can provide more reliable 3D models that
can help geoengineers gain better insights into crucial structural elements in the design stages.

« The result of this project was also implemented/integrated with a GeoBIM system to create an
automated process for 3D bedrock surface modelling. The users of GeoBIM perform their own 3D
bedrock surface modelling. This can assist all geotechnicians, rock engineers and engineering geologists
who use bedrock surface models for decision making and project planning.
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